Результаты поиска по 'classification':
Найдено статей: 55
  1. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  2. Khavinson M.J., Kulakov M.P.
    Mathematical modeling of the population dynamics of different age-group workers in the regional economy
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454

    The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.

    Views (last year): 4. Citations: 15 (RSCI).
  3. Katasev A.S.
    Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492

    This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.

    Views (last year): 12.
  4. Lysych M.N.
    Computer simulation of the process soil treatment by tillage tools of soil processing machines
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627

    The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.

  5. Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Asliamov T.I., Bolshakov T.E.
    Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415

    We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.

  6. Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

  7. Shumov V.V.
    Special action and counter-terrorism models
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1467-1498

    Special actions (guerrilla, anti-guerrilla, reconnaissance and sabotage, subversive, counter-terrorist, counter-sabotage, etc.) are organized and conducted by law enforcement and armed forces and are aimed at protecting citizens and ensuring national security. Since the early 2000s, the problems of special actions have attracted the attention of specialists in the field of modeling, sociologists, physicists and representatives of other sciences. This article reviews and characterizes the works in the field of modeling special actions and counterterrorism. The works are classified by modeling methods (descriptive, optimization and game-theoretic), by types and stages of actions, and by phases of management (preparation and conduct of activities). The second section presents a classification of methods and models for special actions and counterterrorism, and gives a brief overview of descriptive models. The method of geographic profiling, network games, models of dynamics of special actions, the function of victory in combat and special actions (the dependence of the probability of victory on the correlation of forces and means of the parties) are considered. The third section considers the “attacker – defender” game and its extensions: the Stackelberg game and the Stackelberg security game, as well as issues of their application in security tasks In the “attacker – defender” game and security games, known works are classified on the following grounds: the sequence of moves, the number of players and their target functions, the time horizon of the game, the degree of rationality of the players and their attitude to risk, the degree of awareness of the players. The fourth section is devoted to the description of patrolling games on a graph with discrete time and simultaneous choice by the parties of their actions (Nash equilibrium is computed to find optimal strategies). The fifth section deals with game-theoretic models of transportation security as applications of Stackelberg security games. The last section is devoted to the review and characterization of a number of models of border security in two phases of management: preparation and conduct of activities. An example of effective interaction between Coast Guard units and university researchers is considered. Promising directions for further research are the following: first, modeling of counter-terrorist and special operations to neutralize terrorist and sabotage groups with the involvement of multidepartmental and heterogeneous forces and means, second, complexification of models by levels and stages of activity cycles, third, development of game-theoretic models of combating maritime terrorism and piracy.

  8. Nikolsky I.M.
    Classifier size optimisation in segmentation of three-dimensional point images of wood vegetation
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 665-675

    The advent of laser scanning technologies has revolutionized forestry. Their use made it possible to switch from studying woodlands using manual measurements to computer analysis of stereo point images called point clouds.

    Automatic calculation of some tree parameters (such as trunk diameter) using a point cloud requires the removal of foliage points. To perform this operation, a preliminary segmentation of the stereo image into the “foliage” and “trunk” classes is required. The solution to this problem often involves the use of machine learning methods.

    One of the most popular classifiers used for segmentation of stereo images of trees is a random forest. This classifier is quite demanding on the amount of memory. At the same time, the size of the machine learning model can be critical if it needs to be sent by wire, which is required, for example, when performing distributed learning. In this paper, the goal is to find a classifier that would be less demanding in terms of memory, but at the same time would have comparable segmentation accuracy. The search is performed among classifiers such as logistic regression, naive Bayes classifier, and decision tree. In addition, a method for segmentation refinement performed by a decision tree using logistic regression is being investigated.

    The experiments were conducted on data from the collection of the University of Heidelberg. The collection contains hand-marked stereo images of trees of various species, both coniferous and deciduous, typical of the forests of Central Europe.

    It has been shown that classification using a decision tree, adjusted using logistic regression, is able to produce a result that is only slightly inferior to the result of a random forest in accuracy, while spending less time and RAM. The difference in balanced accuracy is no more than one percent on all the clouds considered, while the total size and inference time of the decision tree and logistic regression classifiers is an order of magnitude smaller than of the random forest classifier.

  9. Levich A.P., Bulgakov N.G., Risnik D.V., Bikbulatov E.S., Bikbulatova E.M., Goncharov I.A., Ershov Y.V., Konuhov I.V., Korneva L.G., Lazareva V.I., Litvinov A.S., Maksimov V.N., Mamihin S.V., Osipov V.A., Otyukova N.G., Poddubnii S.A., Pirina I.L., Sokolova E.A., Stepanova I.E., Fursova P.V., Celmovich O.L.
    Searching for connections between biological and physico-chemical characteristics of Rybinsk reservoir ecosystem. Part 3. Calculation of the boundaries of water quality classes
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 451-471

    Approbation of calculation of borders of water quality classes for the purpose of ecological diagnosis and standardization by data of the Rybinsk reservoir is carried out. For bioindication indicators of phytoplankton fluorescence and the contents of pigments of phytoplankton are used. Chesnokov's importance coefficient proved to be the most preferred measure of connection for analyzing the effects of environmental factors on indicators. The factors important for environmental condition are identified. Comparison of borders between quality classes “valid” and “invalid” of factors values and boundaries of the classifications of water quality.

    Views (last year): 4. Citations: 4 (RSCI).
  10. Minkov L.L., Pikushchak E.V., Dueck J.G.
    Investigation of water injection influence on hydrocyclone separation performance
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 803-810

    In this paper particularities of the swirling turbulent flow of monodisperse suspension in the hydrocyclone with injector are investigated on the base of the numerical simulation. The 2D axisymmetric approximation of Reynolds Stresses Model and model of mixture is used to describe the swirling turbulent flow field of suspension and particles parameters in the hydrocyclone. Special attention is paid to the clarification of mechanisms of injection influence on the reorganization of hydrodynamic field and finally on classification mechanisms. It is shown that tangential injection method stronger effects separation curve compared to the radial one.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"