Результаты поиска по 'complexity':
Найдено статей: 271
  1. Kazarnikov A.V.
    Analysing the impact of migration on background social strain using a continuous social stratification model
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673

    The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.

  2. Betelin V.B., Galkin V.A.
    Mathematical and computational problems associated with the formation of structures in complex systems
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 805-815

    In this paper, the system of equations of magnetic hydrodynamics (MHD) is considered. The exact solutions found describe fluid flows in a porous medium and are related to the development of a core simulator and are aimed at creating a domestic technology «digital deposit» and the tasks of controlling the parameters of incompressible fluid. The central problem associated with the use of computer technology is large-dimensional grid approximations and high-performance supercomputers with a large number of parallel microprocessors. Kinetic methods for solving differential equations and methods for «gluing» exact solutions on coarse grids are being developed as possible alternatives to large-dimensional grid approximations. A comparative analysis of the efficiency of computing systems allows us to conclude that it is necessary to develop the organization of calculations based on integer arithmetic in combination with universal approximate methods. A class of exact solutions of the Navier – Stokes system is proposed, describing three-dimensional flows for an incompressible fluid, as well as exact solutions of nonstationary three-dimensional magnetic hydrodynamics. These solutions are important for practical problems of controlled dynamics of mineralized fluids, as well as for creating test libraries for verification of approximate methods. A number of phenomena associated with the formation of macroscopic structures due to the high intensity of interaction of elements of spatially homogeneous systems, as well as their occurrence due to linear spatial transfer in spatially inhomogeneous systems, are highlighted. It is fundamental that the emergence of structures is a consequence of the discontinuity of operators in the norms of conservation laws. The most developed and universal is the theory of computational methods for linear problems. Therefore, from this point of view, the procedures of «immersion» of nonlinear problems into general linear classes by changing the initial dimension of the description and expanding the functional spaces are important. Identification of functional solutions with functions makes it possible to calculate integral averages of an unknown, but at the same time its nonlinear superpositions, generally speaking, are not weak limits of nonlinear superpositions of approximations of the method, i.e. there are functional solutions that are not generalized in the sense of S. L. Sobolev.

  3. Nedbailo Y.A., Surchenko A.V., Bychkov I.N.
    Reducing miss rate in a non-inclusive cache with inclusive directory of a chip multiprocessor
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 639-656

    Although the era of exponential performance growth in computer chips has ended, processor core numbers have reached 16 or more even in general-purpose desktop CPUs. As DRAM throughput is unable to keep pace with this computing power growth, CPU designers need to find ways of lowering memory traffic per instruction. The straightforward way to do this is to reduce the miss rate of the last-level cache. Assuming “non-inclusive cache, inclusive directory” (NCID) scheme already implemented, three ways of reducing the cache miss rate further were studied.

    The first is to achieve more uniform usage of cache banks and sets by employing hash-based interleaving and indexing. In the experiments in SPEC CPU2017 refrate tests, even the simplest XOR-based hash functions demonstrated a performance increase of 3.2%, 9.1%, and 8.2% for CPU configurations with 16, 32, and 64 cores and last-level cache banks, comparable to the results of more complex matrix-, division- and CRC-based functions.

    The second optimisation is aimed at reducing replication at different cache levels by means of automatically switching to the exclusive scheme when it appears optimal. A known scheme of this type, FLEXclusion, was modified for use in NCID caches and showed an average performance gain of 3.8%, 5.4 %, and 7.9% for 16-, 32-, and 64-core configurations.

    The third optimisation is to increase the effective cache capacity using compression. The compression rate of the inexpensive and fast BDI*-HL (Base-Delta-Immediate Modified, Half-Line) algorithm, designed for NCID, was measured, and the respective increase in cache capacity yielded roughly 1% of the average performance increase.

    All three optimisations can be combined and demonstrated a performance gain of 7.7%, 16% and 19% for CPU configurations with 16, 32, and 64 cores and banks, respectively.

  4. Stepantsov M.Y.
    Modeling some scenarios in the “power – society” system concerning migration and changing the number of regions
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1499-1512

    The paper considers an earlier proposed by the author discrete modification of the A. P. Mikhailov “power – society” model. The modification is based on a stochastic cellular automaton, it’s microdynamics being completely different from the c continuous model based on differential equations. However, the macrodynamics of the discrete modification is shown in previous works to be equivalent to one of the continuous model. This is important, but at the same time raises the question why use the discrete model. The answer lies in its flexibility, which allows adding a variety of factors, the consideration of which in a continuous model either leads to a significant increase in computational complexity or is simply impossible.

    This paper considers several examples of such applicability expansion of the model, with the help of which a number of applied problems are solved.

    One of the modifications of the model takes into account economic ties between regions and municipalities, which could not be studied in the basic model. Computational experiments confirmed the improvement of the socio-economic indicators of the system under the influence of the ties.

    The second modification allows internal migration in the system. Using it we studied the socio-economic development of a more prosperous region that attracts migrants.

    Next we studied the dynamics of the system while the number of regions and municipalities changes. The negative impact of this process on the socio-economic indicators of the system was shown and possible control was found to overcome this negative impact.

    The results of this study, therefore, include both the solution of some applied problems and the demonstration of the broader applicability of the discrete model compared with the continuous one.

  5. Sobolev O.V., Lunina N.L., Lunin V.Yu.
    The use of cluster analysis methods for the study of a set of feasible solutions of the phase problem in biological crystallography
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 91-101

    X-ray diffraction experiment allows determining of magnitudes of complex coefficients in the decomposition of the studied electron density distribution into Fourier series. The determination of the lost in the experiment phase values poses the central problem of the method, namely the phase problem. Some methods for solving of the phase problem result in a set of feasible solutions. Cluster analysis method may be used to investigate the composition of this set and to extract one or several typical solutions. An essential feature of the approach is the estimation of the closeness of two solutions by the map correlation between two aligned Fourier syntheses calculated with the use of phase sets under comparison. An interactive computer program ClanGR was designed to perform this analysis.

    Views (last year): 2.
  6. Popinako A.V.
    Molecular modeling and dynamics of serotonin 5-HT3 receptor and ligands
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 329-334

    The problem of ligand binding to certain receptor proteins is of central importance in cellular signaling, but it is still unresolved at a molecular level. In order to enhance our understanding of the molecular mechanisms we used a biophysical approach to study a serotonin-gated ion channel. The molecular model of 5-HT3 receptor extracellular domain was created using computer-based homology modeling. The docking method was used for building complexes of the 5-HT3 receptor and ligands. Some different activities were investigated by the method of molecular dynamics.

    Citations: 1 (RSCI).
  7. Polosin A.N., Chistyakova T.B.
    Modeling system of extrusion and forming polymeric materials for blown film quality control
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 137-158

    Flexible software for modeling polymeric film production by use of blown extrusion has been developed. It consists of library of mathematical models for extrusion and forming blown film, sub-system for changeover to new type of film and sub-system for investigation of extrusion and forming for film quality control under film production. The sub-system for changeover allows to choose the equipment of extrusion line on technical and economic indices, to synthesize 3D model of the line and to generate regulation ranges of regime parameters for given type of film. The sub-system for investigation allows to calculate temperature profiles of heating and cooling material, geometrical and optical characteristics of film depending on regime parameters for stages of extrusion and forming and to evaluate regime parameters ensuring given quality of polymeric film.

    Views (last year): 7. Citations: 3 (RSCI).
  8. Bratsun D.A., Zakharov A.P., Pismen L.M.
    Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604

    In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.

    Views (last year): 10. Citations: 12 (RSCI).
  9. Chernov I.A.
    High-throughput identification of hydride phase-change kinetics models
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183

    Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.

  10. Uchmanski J.Z.
    On algorithmic essence of biology
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 641-652

    Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"