All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
On possible changes in phytocenoses of the Sea of Azov under climate warming
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 981-991Views (last year): 11.Base long-term modern scenarios of hydrochemical and temperature regimes of the Sea of Azov were considered. New schemes of modeling mechanisms of algal adaptation to changes in the hydrochemical regime and temperature were proposed. In comparison to the traditional ecological-evolutionary schemes, these models have a relatively small dimension, high speed and allow carrying out various calculations on long-term perspective (evolutionally significant times). Based on the ecology-evolutionary model of the lower trophic levels the impact of these environmental factors on the dynamics and microevolution of algae in the Sea of Azov was estimated. In each scenario, the calculations were made for 100 years, with the final values of the variables and parameters not depending on the choice of the initial values. In the process of such asymptotic computer analysis, it was found that as a result of climate warming and temperature adaptation of organisms, the average annual biomass of thermophilic algae (Pyrrophyta and Cyanophyta) naturally increases. However, for a number of diatom algae (Bacillariophyta), even with their temperature adaptation, the average annual biomass may unexpectedly decrease. Probably, this phenomenon is associated with a toughening of competition between species with close temperature parameters of existence. The influence of the variation in the chemical composition of the Don River’s flow on the dynamics of nutrients and algae of the Sea of Azov was also investigated. It turned out that the ratio of organic forms of nitrogen and phosphorus in sea waters varies little. This stabilization phenomenon will take place for all high-productive reservoirs with low flow, due to autochthonous origin of larger part of organic matter in water bodies of this type.
-
The analysis of images in control systems of unmanned automobiles on the base of energy features model
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 369-376Views (last year): 31. Citations: 1 (RSCI).The article shows the relevance of research work in the field of creating control systems for unmanned vehicles based on computer vision technologies. Computer vision tools are used to solve a large number of different tasks, including to determine the location of the car, detect obstacles, determine a suitable parking space. These tasks are resource intensive and have to be performed in real time. Therefore, it is important to develop effective models, methods and tools that ensure the achievement of the required time and accuracy for use in unmanned vehicle control systems. In this case, the choice of the image representation model is important. In this paper, we consider a model based on the wavelet transform, which makes it possible to form features characterizing the energy estimates of the image points and reflecting their significance from the point of view of the contribution to the overall image energy. To form a model of energy characteristics, a procedure is performed based on taking into account the dependencies between the wavelet coefficients of various levels and the application of heuristic adjustment factors for strengthening or weakening the influence of boundary and interior points. On the basis of the proposed model, it is possible to construct descriptions of images their characteristic features for isolating and analyzing, including for isolating contours, regions, and singular points. The effectiveness of the proposed approach to image analysis is due to the fact that the objects in question, such as road signs, road markings or car numbers that need to be detected and identified, are characterized by the relevant features. In addition, the use of wavelet transforms allows to perform the same basic operations to solve a set of tasks in onboard unmanned vehicle systems, including for tasks of primary processing, segmentation, description, recognition and compression of images. The such unified approach application will allow to reduce the time for performing all procedures and to reduce the requirements for computing resources of the on-board system of an unmanned vehicle.
-
Numerical simulation of two-dimensional magnetic skyrmion structures
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.
The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.
Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.
The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.
-
Technology for collecting initial data for constructing models for assessing the functional state of a human by pupil's response to illumination changes in the solution of some problems of transport safety
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 417-427This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.
-
Data-driven simulation of a two-phase flow in heterogenous porous media
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.
-
Speeding up the two-stage simultaneous traffic assignment model
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 343-355This article describes possible improvements for the simultaneous multi-stage transport model code for speeding up computations and improving the model detailing. The model consists of two blocks, where the first block is intended to calculate the correspondence matrix, and the second block computes the equilibrium distribution of traffic flows along the routes. The first block uses a matrix of transport costs that calculates a matrix of correspondences. It describes the costs (time in our case) of travel from one area to another. The second block presents how exactly the drivers (agents) are distributed along the possible paths. So, knowing the distribution of the flows along the paths, it is possible to calculate the cost matrix. Equilibrium in a two-stage traffic flow model is a fixed point of a sequence of the two described models. Thus, in this paper we report an attempt to influence the calculation speed of Dijkstra’s algorithm part of the model. It is used to calculate the shortest path from one point to another, which should be re-calculated after each iteration of the flow distribution part. We also study and implement the road pricing in the model code, as well as we replace the Sinkhorn algorithm in the calculation of the correspondence matrix part with its faster implementation. In the beginning of the paper, we provide a short theoretical overview of the transport modelling motivation; we discuss current approaches to the modelling and provide an example for demonstration of how the whole cycle of multi-stage transport modelling works.
-
Two-dimensional modeling of influence on detached supersonic gas flow caused by its turning by means of rapid local heating
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1283-1300The influence of the process of initiating a rapid local heat release near surface streamlined by supersonic gas (air) flow on the separation region that occurs during a fast turn of the flow was investigated. This surface consists of two planes that form obtuse angle when crossing, so that when flowing around the formed surface, the supersonic gas flow turns by a positive angle, which forms an oblique shock wave that interacts with the boundary layer and causes flow separation. Rapid local heating of the gas above the streamlined surface simulates long spark discharge of submicrosecond duration that crosses the flow. The gas heated in the discharge zone interacts with the separation region. The flow can be considered two-dimensional, so the numerical simulation is carried out in a two-dimensional formulation. Numerical simulation was carried out for laminar regime of flow using the sonicFoam solver of the OpenFOAM software package.
The paper describes a method for constructing a two-dimensional computational grid using hexagonal cells. A study of grid convergence has been carried out. A technique is given for setting the initial profiles of the flow parameters at the entrance to the computational domain, which makes it possible to reduce the computation time by reducing the number of computational cells. A method for non-stationary simulation of the process of rapid local heating of a gas is described, which consists in superimposing additional fields of increased pressure and temperature values calculated from the amount of energy deposited in oncoming supersonic gas flow on the corresponding fields of values obtained in the stationary case. The parameters of the energy input into the flow corresponding to the parameters of the electric discharge process, as well as the parameters of the oncoming flow, are close to the experimental values.
During analyzing numerical simulation data it was found that the initiation of rapid local heating leads to the appearance of a gas-dynamic perturbation (a quasi-cylindrical shock wave and an unsteady swirling flow), which, when interacting with the separation region, leads to a displacement of the separation point downstream. The paper considers the question of the influence of the energy spent on local heating of the gas, and of the position on the streamlined surface of the place of heating relative to the separation point, on the value of its maximum displacement.
-
A surrogate neural network model for resolving the flow field in serial calculations of steady turbulent flows with a resolution of the nearwall region
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1195-1216When modeling turbulent flows in practical applications, it is often necessary to carry out a series of calculations of bodies of similar topology. For example, bodies that differ in the shape of the fairing. The use of convolutional neural networks allows to reduce the number of calculations in a series, restoring some of them based on calculations already performed. The paper proposes a method that allows to apply a convolutional neural network regardless of the method of constructing a computational mesh. To do this, the flow field is reinterpolated to a uniform mesh along with the body itself. The geometry of the body is set using the signed distance function and masking. The restoration of the flow field based on part of the calculations for similar geometries is carried out using a neural network of the UNet type with a spatial attention mechanism. The resolution of the nearwall region, which is a critical condition for turbulent modeling, is based on the equations obtained in the nearwall domain decomposition method.
A demonstration of the method is given for the case of a flow around a rounded plate by a turbulent air flow with different rounding at fixed parameters of the incoming flow with the Reynolds number $Re = 10^5$ and the Mach number $M = 0.15$. Since flows with such parameters of the incoming flow can be considered incompressible, only the velocity components are studied directly. The flow fields, velocity and friction profiles obtained by the surrogate model and numerically are compared. The analysis is carried out both on the plate and on the rounding. The simulation results confirm the prospects of the proposed approach. In particular, it was shown that even if the model is used at the maximum permissible limits of its applicability, friction can be obtained with an accuracy of up to 90%. The work also analyzes the constructed architecture of the neural network. The obtained surrogate model is compared with alternative models based on a variational autoencoder or the principal component analysis using radial basis functions. Based on this comparison, the advantages of the proposed method are demonstrated.
-
Modeling some scenarios in the “power – society” system concerning migration and changing the number of regions
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1499-1512The paper considers an earlier proposed by the author discrete modification of the A. P. Mikhailov “power – society” model. The modification is based on a stochastic cellular automaton, it’s microdynamics being completely different from the c continuous model based on differential equations. However, the macrodynamics of the discrete modification is shown in previous works to be equivalent to one of the continuous model. This is important, but at the same time raises the question why use the discrete model. The answer lies in its flexibility, which allows adding a variety of factors, the consideration of which in a continuous model either leads to a significant increase in computational complexity or is simply impossible.
This paper considers several examples of such applicability expansion of the model, with the help of which a number of applied problems are solved.
One of the modifications of the model takes into account economic ties between regions and municipalities, which could not be studied in the basic model. Computational experiments confirmed the improvement of the socio-economic indicators of the system under the influence of the ties.
The second modification allows internal migration in the system. Using it we studied the socio-economic development of a more prosperous region that attracts migrants.
Next we studied the dynamics of the system while the number of regions and municipalities changes. The negative impact of this process on the socio-economic indicators of the system was shown and possible control was found to overcome this negative impact.
The results of this study, therefore, include both the solution of some applied problems and the demonstration of the broader applicability of the discrete model compared with the continuous one.
-
Determination of post-reconstruction correction factors for quantitative assessment of pathological bone lesions using gamma emission tomography
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 677-696In single-photon emission computed tomography (SPECT), patients with bone disorders receive a radiopharmaceutical (RP) that accumulates selectively in pathological lesions. Accurate quantification of RP uptake plays a critical role in disease staging, prognosis, and the development of personalized treatment strategies. Traditionally, the accuracy of quantitative assessment is evaluated through in vitro clinical trials using the standardized physical NEMA IEC phantom, which contains six spheres simulating lesions of various sizes. However, such experiments are limited by high costs and radiation exposure to researchers. This study proposes an alternative in silico approach based on numerical simulation using a digital twin of the NEMA IEC phantom. The computational framework allows for extensive testing under varying conditions without physical constraints. Analogous to clinical protocols, we calculated the recovery coefficient (RCmax), defined as the ratio of the maximum activity in a lesion to its known true value. The simulation settings were tailored to clinical SPECT/CT protocols involving 99mTc for patients with bone-related diseases. For the first time, we systematically analyzed the impact of lesion-to-background ratios and post-reconstruction filtering on RCmax values. Numerical experiments revealed the presence of edge artifacts in reconstructed lesion images, consistent with those observed in both real NEMA IEC phantom studies and patient scans. These artifacts introduce instability into the iterative reconstruction process and lead to errors in activity quantification. Our results demonstrate that post-filtering helps suppress edge artifacts and stabilizes the solution. However, it also significantly underestimates activity in small lesions. To address this issue, we introduce post-reconstruction correction factors derived from our simulations to improve the accuracy of quantification in lesions smaller than 20 mm in diameter.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




