All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Views (last year): 16. Citations: 3 (RSCI).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Repressilator with time-delayed gene expression. Part II. Stochastic description
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 587-609The repressilator is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements $lacI$, $\lambda cI$ and $tetR$, which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In our previous paper [Bratsun et al., 2018], we proposed a mathematical model of a delayed repressillator and studied its properties within the framework of a deterministic description. We assume that delay can be both natural, i.e. arises during the transcription / translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using gene engineering technologies. In this work, we apply the stochastic description of dynamic processes in a delayed repressilator, which is an important addition to deterministic analysis due to the small number of molecules involved in gene regulation. The stochastic study is carried out numerically using the Gillespie algorithm, which is modified for time delay systems. We present the description of the algorithm, its software implementation, and the results of benchmark simulations for a onegene delayed autorepressor. When studying the behavior of a repressilator, we show that a stochastic description in a number of cases gives new information about the behavior of a system, which does not reduce to deterministic dynamics even when averaged over a large number of realizations. We show that in the subcritical range of parameters, where deterministic analysis predicts the absolute stability of the system, quasi-regular oscillations may be excited due to the nonlinear interaction of noise and delay. Earlier, we have discovered within the framework of the deterministic description, that there exists a long-lived transient regime, which is represented in the phase space by a slow manifold. This mode reflects the process of long-term synchronization of protein pulsations in the work of the repressilator genes. In this work, we show that the transition to the cooperative mode of gene operation occurs a two order of magnitude faster, when the effect of the intrinsic noise is taken into account. We have obtained the probability distribution of moment when the phase trajectory leaves the slow manifold and have determined the most probable time for such a transition. The influence of the intrinsic noise of chemical reactions on the dynamic properties of the repressilator is discussed.
-
Comprehensive analysis of copper ions effect on the primary processes of photosynthesis in Scenedesmus quadricauda based on chlorophyll a fluorescence measurements in suspension and on single cells
Computer Research and Modeling, 2025, v. 17, no. 2, pp. 293-322The effect of copper ions on the primary processes of photosynthesis in freshwater microalgae Scenedesmus quadricauda was studied using a set of biophysical and mathematical methods. Chlorophyll a fluorescence transients were recorded both in cell suspensions and at the level of single cells after incubation at copper concentrations of 0.1–10 $\mu$M under light and dark conditions. It was found that copper has a dose-dependent effect on the photosynthetic apparatus of microalgae. At low copper concentration (0.1 $\mu$M), a stimulating effect on a number of studied parameters was observed, whereas significant disruption of Photosystem II activity was detected at 10 $\mu$M. The method of analyzing fluorescence of single cells proved to be more sensitive compared to traditional suspension measurements, allowing the detection of heterogeneous cellular responses to the toxicant. Analysis of chlorophyll a fast fluorescence kinetics showed that the JIP-test parameters $\delta_{Ro}$ and $\varphi_{Ro}$ were the most sensitive to copper exposure and were significantly different from the control when exposed not only to high but also to medium (1 $\mu$M) copper concentrations. The decrease in photochemical activity of cells during light incubation was less pronounced compared to dark conditions. The application of data normalization to optical density at $\lambda = 455$ nm significantly increased the sensitivity of the method and accuracy of result interpretation. The use of L1-regularization (LASSO) by the least angles method (LARS) for the spectral multi-exponential approximation of the fluorescence transients allowed us to reveal their temporal characteristics. Mathematical analysis of the obtained data suggested that copper exposure leads to increased non-photochemical quenching of fluorescence, which serves as a protective mechanism for dissipating excess excitation energy. The revealed heterogeneity of cellular responses to copper action may have important ecological significance, ensuring the survival of part of the population under stress conditions. The obtained data confirm the promise of using fluorescent analysis methods for early diagnosis of heavy metal stress effects on photosynthesizing organisms.
-
Mechanism of soliton stopping in a molecular chain without dispersion
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 93-99Views (last year): 2. Citations: 1 (RSCI).It is shown by computer simulation that moving soliton-like solution exists in a molecular chain without dispersion. The speed of the solitary wave decreases with time. This decrease can be explained physically due to excitation of sites by moving wave. Maximum wave track length is estimated.
-
On the computer experiments of Kasman
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 503-513Views (last year): 23.In 2007 Kasman conducted a series of original computer experiments with sine-Gordon kinks moving along artificial DNA sequences. Two sequences were considered. Each consisted of two parts separated by a boundary. The left part of the first sequence contained repeating TTA triplets that encode leucines, and the right part contained repeating CGC triplets that encode arginines. In the second sequence, the left part contained repeating CTG triplets encoding leucines, and the right part contained repeating AGA triplets encoding arginines. When modeling the kink movement, an interesting effect was discovered. It turned out that the kink, moving in one of the sequences, stopped without reaching the end of the sequence, and then “bounced off” as if he had hit a wall. At the same time, the kink movement in the other sequence did not stop during the entire time of the experiment. In these computer experiments, however, a simple DNA model proposed by Salerno was used. It takes into account differences in the interactions of complementary bases within pairs, but does not take into account differences in the moments of inertia of nitrogenous bases and in the distances between the centers of mass of the bases and the sugar-phosphate chain. The question of whether the Kasman effect will continue with the use of more accurate DNA models is still open. In this paper, we investigate the Kasman effect on the basis of a more accurate DNA model that takes both of these differences into account. We obtained the energy profiles of Kasman's sequences and constructed the trajectories of the motion of kinks launched in these sequences with different initial values of the energy. The results of our investigations confirmed the existence of the Kasman effect, but only in a limited interval of initial values of the kink energy and with a certain direction of the kinks movement. In other cases, this effect did not observe. We discussed which of the studied sequences were energetically preferable for the excitation and propagation of kinks.
-
Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389Views (last year): 1. Citations: 6 (RSCI).The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.
-
The dynamics of polynucleotide chain consisting of two different homogeneous sequences, divided by interface
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 241-253Views (last year): 1. Citations: 3 (RSCI).To research dynamics of inhomogeneous polynucleotide DNA chain the Y-model with no dissipation term was used. Basing on this model using numerical methods calculations were carried out, which have shown the behaviour of nonlinear conformational excitation (kink), spreading along the inhomogeneous polynucleotide chain, consisting of two different homogeneous nucleotide sequences. As numerical analysis shows there are three ways of behaviour of the nonlinear kink excitation spreading along the DNA chain. After reaching the interface between two homogeneous sequences consisting of different types of bases kink can a) reflect, b) pass the interface with acceleration (increase its velocity), c) pass the interface with deceleration (decrease its velocity).
-
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Views (last year): 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Views (last year): 8. Citations: 2 (RSCI).
A mathematical model that reflects the main features of the protests is constructed in this paper. An analytical solution was found with assuming that only excited part of the population involved in protests. The numerical value of the model coefficients was estimated from the real data for the cascade of protests that took place in Leipzig in 1989. The changes of the participants number in the protest action with influence the model coefficients was analysed.
-
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




