Результаты поиска по 'factor':
Найдено статей: 149
  1. Karpaev A.A., Aliev R.R.
    Application of simplified implicit Euler method for electrophysiological models
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864

    A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.

  2. Kireenkov A.A., Zhavoronok S.I., Nushtaev D.V.
    On tire models accounting for both deformed state and coupled dry friction in a contact spot
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 163-173

    A proposed approximate model of the rolling of a deforming wheel with a pneumatic tire allows one to account as well forces in tires as the effect of the dry friction on the stability of the rolling upon the shimmy phenomenon prognosis. The model os based on the theory of the dry friction with combined kinematics of relative motion of interacting bodies, i. e. under the condition of simultaneous rolling, sliding, and spinning with accounting for the real shape of a contact spot and contact pressure distribution. The resultant vector and couple of the forces generated by the contact interaction with dry friction are defined by integration over the contact area, whereas the static contact pressure under the conditions of vanishing velocity of sliding and angular velocity of spinning is computed after the finite-element solution for the statical contact of a pneumatic with a rigid road with accounting forreal internal structure and properties of a tire. The solid finite element model of a typical tire with longitudinal thread is used below as a background. Given constant boost pressure, vertical load and static friction factor 0.5 the numerical solution is constructed, as well as the appropriate solutions for lateral and torsional kinematic loading. It is shown that the contact interaction of a pneumatic tire and an absolutely rigid road could be represented without crucial loss of accuracy as two typical stages, the adhesion and the slip; the contact area shape remains nevertheless close to a circle. The approximate diagrams are constructed for both lateral force and friction torque; on the initial stage the diagrams are linear so that corresponds to the elastic deformation of a tire while on the second stage both force and torque values are constant and correspond to the dry friction force and torque. For the last stages the approximate formulae for the longitudinal and lateral friction force and the friction torque are constructed on the background of the theory of the dry friction with combined kinematics. The obtained model can be treated as a combination of the Keldysh model of elastic wheel with no slip and spin and the Klimov rigid wheel model interacting with a road by dry friction forces.

  3. Dementiev V.E.
    The model of interference of long waves of economic development
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 649-663

    The article substantiates the need to develop and analyze mathematical models that take into account the mutual influence of long (Kondratiev) waves of economic development. The analysis of the available publications shows that at the model level, the direct and inverse relationships between intersecting long waves are still insufficiently studied. As practice shows, the production of the current long wave can receive an additional impetus for growth from the technologies of the next long wave. The technologies of the next industrial revolution often serve as improving innovations for the industries born of the previous industrial revolution. As a result, the new long wave increases the amplitude of the oscillations of the trajectory of the previous long wave. Such results of the interaction of long waves in the economy are similar to the effects of interference of physical waves. The mutual influence of the recessions and booms of the economies of different countries gives even more grounds for comparing the consequences of this mutual influence with the interference of physical waves. The article presents a model for the development of the technological base of production, taking into account the possibilities of combining old and new technologies. The model consists of several sub-models. The use of a different mathematical description for the individual stages of updating the technological base of production allows us to take into account the significant differences between the successive phases of the life cycle of general purpose technologies, considered in modern literature as the technological basis of industrial revolutions. One of these phases is the period of formation of the appropriate infrastructure necessary for the intensive diffusion of new general purpose technology, for the rapid development of industries using this technology. The model is used for illustrative calculations with the values of exogenous parameters corresponding to the logic of changing long waves. Despite all the conditionality of the illustrative calculations, the configuration of the curve representing the change in the return on capital in the simulated period is close to the configuration of the real trajectory of the return on private fixed assets of the US economy in the period 1982-2019. The factors that remained outside the scope of the presented model, but which are advisable to take into account when describing the interference of long waves of economic development, are indicated.

  4. Syzranova N.G., Andruschenko V.A.
    Numerical modeling of physical processes leading to the destruction of meteoroids in the Earth’s atmosphere
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 835-851

    Within the framework of the actual problem of comet-asteroid danger, the physical processes causing the destruction and fragmentation of meteor bodies in the Earth’s atmosphere are numerically investigated. Based on the developed physicalmathematical models that determines the movements of space objects of natural origin in the atmosphere and their interaction with it, the fall of three, one of the largest and by some parameters unusual bolides in the history of meteoritics, are considered: Tunguska, Vitim and Chelyabinsk. Their singularity lies in the absence of any material meteorite remains and craters in the area of the alleged crash site for the first two bodies and the non-detection, as it is assumed, of the main mother body for the third body (due to the too small amount of mass of the fallen fragments compared to the estimated mass). The effect of aerodynamic loads and heat flows on these bodies are studied, which leads to intensive surface mass loss and possible mechanical destruction. The velocities of the studied celestial bodies and the change in their masses are determined from the modernized system of equations of the theory of meteoric physics. An important factor that is taken into account here is the variability of the meteorite mass entrainment parameter under the action of heat fluxes (radiation and convective) along the flight path. The process of fragmentation of meteoroids in this paper is considered within the framework of a progressive crushing model based on the statistical theory of strength, taking into account the influence of the scale factor on the ultimate strength of objects. The phenomena and effects arising at various kinematic and physical parameters of each of these bodies are revealed. In particular, the change in the ballistics of their flight in the denser layers of the atmosphere, consisting in the transition from the fall mode to the ascent mode. At the same time, the following scenarios of the event can be realized: 1) the return of the body back to outer space at its residual velocity greater than the second cosmic one; 2) the transition of the body to the orbit of the Earth satellite at a residual velocity greater than the first cosmic one; 3) at lower values of the residual velocity of the body, its return after some time to the fall mode and falling out at a considerable distance from the intended crash site. It is the implementation of one of these three scenarios of the event that explains, for example, the absence of material traces, including craters, in the case of the Tunguska bolide in the vicinity of the forest collapse. Assumptions about the possibility of such scenarios have been made earlier by other authors, and in this paper their implementation is confirmed by the results of numerical calculations.

  5. Varshavsky L.E.
    Modeling the impact of sanctions and import substitution on market performance
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 365-380

    The article considers an approach to modeling the impact of sanctions and import substitution on the performance of high-tech product markets based on the use of control theory methods (operational calculus, z-transform). The model under consideration assumes that an equipment manufacturer supplies unique high-tech equipment to a high-tech product (HP) manufacturer that dominates the equipment consumer market. The HP manufacturer, fearing disruption of equipment supplies due to the introduction of all kinds of restrictions and sanctions, invests in the development of import-substituting equipment production in a third company, which can also find application in the external market, at the expense of deductions from its profits. The influence of the following factors and actions on the performance of the conditional market is analyzed: 1) the degree of inertia of the development and production development processes in the company; 2) the share of equipment of the import-substituting company supplied to the HP manufacturer; 3) sanctions (general and selective) on the supply of equipment to the company-manufacturer of the import substitution, as well as blocking the import substitution process in the third company by the first company.

    The calculations show that the acceleration of the equipment development and production processes leads to a faster decrease in the production volumes of the first company. At the same time, an increase in price is observed, which is associated with a change in the parameters of the inverse demand function.

    An increase in the share of equipment of the import-substituting company consumed by the second company can lead to a sharp increase in production volumes in the second and third companies, stabilization of production volumes in the first company and an increase in price.

    The introduction of sanctions leads to a decrease in the production volumes and income of all companies relative to the baseline version. A significant change in price also occurs. However, due to the inertia of the equipment production processes in the example under consideration, a significant change in production volumes in the aggregate of companies occurs with a significant lag. This is especially characteristic of the third company, in which a noticeable deviation from the baseline version begins after 20 years. The blocking by the first equipment manufacturing company of investments in the development of import substitution in the third company ensures a relatively small gain for the first company in production volumes and NPV although allows to raise her market share.

  6. Vavilova D.D., Ketova K.V., Zerari R.
    Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236

    Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.

  7. Svetlov K.V., Ivanov S.A.
    Stochastic model of voter dynamics in online media
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997

    In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.

    The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.

    Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.

  8. Vasiliev I.A., Dubinya N.V., Tikhotskiy S.A., Nachev V.A., Alexeev D.A.
    Numerical model of jack-up rig’s mechanical behavior under seismic loading
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871

    The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.

  9. Ansori Moch.F., Al Jasir H., Sihombing A.H., Putra S.M., Nurfaizah D.A., Nurulita E.
    Assessing the impact of deposit benchmark interest rate on banking loan dynamics
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 1023-1032

    Deposit benchmark interest rates are a policy implemented by banking regulators to calculate the interest rates offered to depositors, maintaining equitable and competitive rates within the financial industry. It functions as a benchmark for determining the pricing of different banking products, expenses, and financial choices. The benchmark rate will have a direct impact on the amount of money deposited, which in turn will determine the amount of money available for lending.We are motivated to analyze the influence of deposit benchmark interest rates on the dynamics of banking loans. This study examines the issue using a difference equation of banking loans. In this process, the decision on the loan amount in the next period is influenced by both the present loan volume and the information on its marginal profit. An analysis is made of the loan equilibrium point and its stability. We also analyze the bifurcations that arise in the model. To ensure a stable banking loan, it is necessary to set the benchmark rate higher than the flip value and lower than the transcritical bifurcation values. The confirmation of this result is supported by the bifurcation diagram and its associated Lyapunov exponent. Insufficient deposit benchmark interest rates might lead to chaotic dynamics in banking lending. Additionally, a bifurcation diagram with two parameters is also shown. We do numerical sensitivity analysis by examining contour plots of the stability requirements, which vary with the deposit benchmark interest rate and other parameters. In addition, we examine a nonstandard difference approach for the previous model, assess its stability, and make a comparison with the standard model. The outcome of our study can provide valuable insights to the banking regulator in making informed decisions regarding deposit benchmark interest rates, taking into account several other banking factors.

  10. Shakhgeldyan K.I., Kuksin N.S., Domzhalov I.G., Pak R.L., Geltser B.I.
    Random forest of risk factors as a predictive tool for adverse events in clinical medicine
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 987-1004

    The aim of study was to develop an ensemble machine learning method for constructing interpretable predictive models and to validate it using the example of predicting in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI).

    A retrospective cohort study was conducted using data from 5446 electronic medical records of STEMI patients who underwent percutaneous coronary intervention (PCI). Patients were divided into two groups: 335 (6.2%) patients who died during hospitalization and 5111 (93.8%) patients with a favourable in-hospital outcome. A pool of potential predictors was formed using statistical methods. Through multimetric categorization (minimizing p-values, maximizing the area under the ROC curve (AUC), and SHAP value analysis), decision trees, and multivariable logistic regression (MLR), predictors were transformed into risk factors for IHM. Predictive models for IHM were developed using MLR, Random Forest Risk Factors (RandFRF), Stochastic Gradient Boosting (XGboost), Random Forest (RF), Adaptive boosting, Gradient Boosting, Light Gradient-Boosting Machine, Categorical Boosting (CatBoost), Explainable Boosting Machine and Stacking methods.

    Authors developed the RandFRF method, which integrates the predictive outcomes of modified decision trees, identifies risk factors and ranks them based on their contribution to the risk of adverse outcomes. RandFRF enables the development of predictive models with high discriminative performance (AUC 0.908), comparable to models based on CatBoost and Stacking (AUC 0.904 and 0.908, respectively). In turn, risk factors provide clinicians with information on the patient’s risk group classification and the extent of their impact on the probability of IHM. The risk factors identified by RandFRF can serve not only as rationale for the prediction results but also as a basis for developing more accurate models.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"