Processing math: 100%
Результаты поиска по 'feature selection':
Найдено статей: 19
  1. Kalitin K.Y., Nevzorov A.A., Spasov A.A., Mukha O.Y.
    Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772

    Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.

    The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.

    Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into 2000×4 images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.

    The classification accuracy obtained for 11 drugs during cross-validation was 0.580±0.021, which is significantly higher than the accuracy of the random classifier (0.091±0.045,p<0.0001) and the kSVM (0.441±0.035,p<0.05). t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.

    The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.

  2. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Zakharova E.M.
    Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170

    Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.

  3. Musaev A.A., Grigoriev D.A.
    Extracting knowledge from text messages: overview and state-of-the-art
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315

    In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.

  4. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Gorbachev R.A.
    Development of and research on an algorithm for distinguishing features in Twitter publications for a classification problem with known markup
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 171-183

    Social media posts play an important role in demonstration of financial market state, and their analysis is a powerful tool for trading. The article describes the result of a study of the impact of social media activities on the movement of the financial market. The top authoritative influencers are selected. Twitter posts are used as data. Such texts usually include slang and abbreviations, so methods for preparing primary text data, including Stanza, regular expressions are presented. Two approaches to the representation of a point in time in the format of text data are considered. The difference of the influence of a single tweet or a whole package consisting of tweets collected over a certain period of time is investigated. A statistical approach in the form of frequency analysis is also considered, metrics defined by the significance of a particular word when identifying the relationship between price changes and Twitter posts are introduced. Frequency analysis involves the study of the occurrence distributions of various words and bigrams in the text for positive, negative or general trends. To build the markup, changes in the market are processed into a binary vector using various parameters, thus setting the task of binary classification. The parameters for Binance candlesticks are sorted out for better description of the movement of the cryptocurrency market, their variability is also explored in this article. Sentiment is studied using Stanford Core NLP. The result of statistical analysis is relevant to feature selection for further binary or multiclass classification tasks. The presented methods of text analysis contribute to the increase of the accuracy of models designed to solve natural language processing problems by selecting words, improving the quality of vectorization. Such algorithms are often used in automated trading strategies to predict the price of an asset, the trend of its movement.

  5. Krasnov F.V., Smaznevich I.S., Baskakova E.N.
    Bibliographic link prediction using contrast resampling technique
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336

    The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.

    A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.

    Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.

  6. Tishkin V.F., Trapeznikova M.A., Chechina A.A., Churbanova N.G.
    Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194

    The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.

  7. Savchuk O.S., Alkousa M.S., Stonyakin F.S.
    On some mirror descent methods for strongly convex programming problems with Lipschitz functional constraints
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1727-1746

    The paper is devoted to one approach to constructing subgradient methods for strongly convex programming problems with several functional constraints. More precisely, the strongly convex minimization problem with several strongly convex (inequality-type) constraints is considered, and first-order optimization methods for this class of problems are proposed. The special feature of the proposed methods is the possibility of using the strong convexity parameters of the violated functional constraints at nonproductive iterations, in theoretical estimates of the quality of the produced solution by the methods. The main task, to solve the considered problem, is to propose a subgradient method with adaptive rules for selecting steps and stopping rule of the method. The key idea of the proposed methods in this paper is to combine two approaches: a scheme with switching on productive and nonproductive steps and recently proposed modifications of mirror descent for convex programming problems, allowing to ignore some of the functional constraints on nonproductive steps of the algorithms. In the paper, it was described a subgradient method with switching by productive and nonproductive steps for strongly convex programming problems in the case where the objective function and functional constraints satisfy the Lipschitz condition. An analog of the proposed subgradient method, a mirror descent scheme for problems with relatively Lipschitz and relatively strongly convex objective functions and constraints is also considered. For the proposed methods, it obtained theoretical estimates of the quality of the solution, they indicate the optimality of these methods from the point of view of lower oracle estimates. In addition, since in many problems, the operation of finding the exact subgradient vector is quite expensive, then for the class of problems under consideration, analogs of the mentioned above methods with the replacement of the usual subgradient of the objective function or functional constraints by the δ-subgradient were investigated. The noted approach can save computational costs of the method by refusing to require the availability of the exact value of the subgradient at the current point. It is shown that the quality estimates of the solution change by O(δ). The results of numerical experiments illustrating the advantages of the proposed methods in comparison with some previously known ones are also presented.

  8. Kirilyuk I.L., Sen'ko O.V.
    Assessing the validity of clustering of panel data by Monte Carlo methods (using as example the data of the Russian regional economy)
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1501-1513

    The paper considers a method for studying panel data based on the use of agglomerative hierarchical clustering — grouping objects based on the similarities and differences in their features into a hierarchy of clusters nested into each other. We used 2 alternative methods for calculating Euclidean distances between objects — the distance between the values averaged over observation interval, and the distance using data for all considered years. Three alternative methods for calculating the distances between clusters were compared. In the first case, the distance between the nearest elements from two clusters is considered to be distance between these clusters, in the second — the average over pairs of elements, in the third — the distance between the most distant elements. The efficiency of using two clustering quality indices, the Dunn and Silhouette index, was studied to select the optimal number of clusters and evaluate the statistical significance of the obtained solutions. The method of assessing statistical reliability of cluster structure consisted in comparing the quality of clustering on a real sample with the quality of clustering on artificially generated samples of panel data with the same number of objects, features and lengths of time series. Generation was made from a fixed probability distribution. At the same time, simulation methods imitating Gaussian white noise and random walk were used. Calculations with the Silhouette index showed that a random walk is characterized not only by spurious regression, but also by “spurious clustering”. Clustering was considered reliable for a given number of selected clusters if the index value on the real sample turned out to be greater than the value of the 95% quantile for artificial data. A set of time series of indicators characterizing production in the regions of the Russian Federation was used as a sample of real data. For these data only Silhouette shows reliable clustering at the level p < 0.05. Calculations also showed that index values for real data are generally closer to values for random walks than for white noise, but it have significant differences from both. Since three-dimensional feature space is used, the quality of clustering was also evaluated visually. Visually, one can distinguish clusters of points located close to each other, also distinguished as clusters by the applied hierarchical clustering algorithm.

  9. The article discusses the problem of the influence of the research goals on the structure of the multivariate model of regression analysis (in particular, on the implementation of the procedure for reducing the dimension of the model). It is shown how bringing the specification of the multiple regression model in line with the research objectives affects the choice of modeling methods. Two schemes for constructing a model are compared: the first does not allow taking into account the typology of primary predictors and the nature of their influence on the performance characteristics, the second scheme implies a stage of preliminary division of the initial predictors into groups, in accordance with the objectives of the study. Using the example of solving the problem of analyzing the causes of burnout of creative workers, the importance of the stage of qualitative analysis and systematization of a priori selected factors is shown, which is implemented not by computing means, but by attracting the knowledge and experience of specialists in the studied subject area. The presented example of the implementation of the approach to determining the specification of the regression model combines formalized mathematical and statistical procedures and the preceding stage of the classification of primary factors. The presence of this stage makes it possible to explain the scheme of managing (corrective) actions (softening the leadership style and increasing approval lead to a decrease in the manifestations of anxiety and stress, which, in turn, reduces the severity of the emotional exhaustion of the team members). Preclassification also allows avoiding the combination in one main component of controlled and uncontrolled, regulatory and controlled feature factors, which could worsen the interpretability of the synthesized predictors. On the example of a specific problem, it is shown that the selection of factors-regressors is a process that requires an individual solution. In the case under consideration, the following were consistently used: systematization of features, correlation analysis, principal component analysis, regression analysis. The first three methods made it possible to significantly reduce the dimension of the problem, which did not affect the achievement of the goal for which this task was posed: significant measures of controlling influence on the team were shown. allowing to reduce the degree of emotional burnout of its participants.

Pages: previous

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"