All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Mathematical model of respiratory regulation during hypoxia and hypercapnia
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 297-310Views (last year): 16.Transport of respiratory gases by respiratory and circulatory systems is one of the most important processes associated with living conditions of the human body. Significant and/or long-term deviations of oxygen and carbon dioxide concentrations from the normal values in blood can be a reason of significant pathological changes with irreversible consequences: lack of oxygen (hypoxia and ischemic events), the change in the acidbase balance of blood (acidosis or alkalosis), and others. In the context of a changing external environment and internal conditions of the body the action of its regulatory systems aimed at maintaining homeostasis. One of the major mechanisms for maintaining concentrations (partial pressures) of oxygen and carbon dioxide in the blood at a normal level is the regulation of minute ventilation, respiratory rate and depth of respiration, which is caused by the activity of the central and peripheral regulators.
In this paper we propose a mathematical model of the regulation of pulmonary ventilation parameter. The model is used to calculate the minute ventilation adaptation during hypoxia and hypercapnia. The model is developed using a single-component model of the lungs, and biochemical equilibrium conditions of oxygen and carbon dioxide in the blood and the alveolar lung volume. A comparison with laboratory data is performed during hypoxia and hypercapnia. Analysis of the results shows that the model reproduces the dynamics of minute ventilation during hypercapnia with sufficient accuracy. Another result is that more accurate model of regulation of minute ventilation during hypoxia should be developed. The factors preventing from satisfactory accuracy are analysed in the final section.
Respiratory function is one of the main limiting factors of the organism during intense physical activities. Thus, it is important characteristic of high performance sport and extreme physical activity conditions. Therefore, the results of this study have significant application value in the field of mathematical modeling in sport. The considered conditions of hypoxia and hypercapnia are partly reproduce training at high altitude and at hypoxia conditions. The purpose of these conditions is to increase the level of hemoglobin in the blood of highly qualified athletes. These conditions are the only admitted by sport committees.
-
Modeling of the supply–demand imbalance in engineering labor market
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1249-1273Nowadays the situation of supply-demand imbalances in the professionals’ labor markets causes human capital losses as far as hampers scientific and innovation development. In Russia, supply-demand imbalances in the engineering labor market are associated with deindustrialization processes and manufacturing decline, resulted in a negative public perception of the engineering profession and high rates of graduates not working within the specialty or changing their occupation.
For analysis of the supply-demand imbalances in the engineering labor market, we elaborated a macroeconomic model. The model consists of 14 blocks, including blocks for demand and supply for engineers and technicians, along with the blocks for macroeconomic indicators as industry and service sector output, capital investment. Using this model, we forecasted the perspective supply-demand imbalances in the engineering labor market in a short-term period and examined the parameters of getting supply-demand balance in the medium-term perspective.
The results obtained show that situation of more balanced supply and demand for engineering labor is possible if there is simultaneous increase in the share of investments in fixed assets of manufacturing and relative wages in industry, besides getting to balance is facilitated by a decrease of the share of graduates not working by specialty. It is worth noting that a decrease in the share of graduates not working by specialty may be affected whether by the growth of relative wages in industry and number of vacancies or by the implementation of measures aimed at improving the working conditions of the engineering workforce and increasing the attractiveness of the profession. To summarize, in the case of the simplest scenario, not considering additional measures of working conditions improvement and increasing the attractiveness of the profession, the conditions of supply-demand balance achievement implies slightly lower growth rates of investment in industry than required in scenarios that involve increasing the share of engineers and technicians working in their specialty after graduation. The latter case, where a gradual decrease in the proportion of those who do not work in engineering specialty is expected, requires, probably, higher investment costs for attracting specialists and creating new jobs, as well as additional measures to strengthen the attractiveness of the engineering profession.
-
World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.
It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.
Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.
The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.
-
Method of estimation of heart failure during a physical exercise
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 311-321Views (last year): 8. Citations: 1 (RSCI).The results of determination of the risk of cardiovascular failure of young athletes and adolescents in stressful physical activity have been demonstrated. The method of screening diagnostics of the risk of developing heart failure has been described. The results of contactless measurement of the form of the pulse wave of the radial artery using semiconductor laser autodyne have been presented. In the measurements used laser diode type RLD-650 specifications: output power of 5 mW, emission wavelength 654 nm. The problem was solved by the reduced form of the reflector movement, which acts as the surface of the skin of the human artery, tested method of assessing the risk of cardiovascular disease during exercise and the analysis of the results of its application to assess the risk of cardiovascular failure reactions of young athletes. As analyzed parameters were selected the following indicators: the steepness of the rise in the systolic portion of the fast and slow phase, the rate of change in the pulse wave catacrota variability of cardio intervals as determined by the time intervals between the peaks of the pulse wave. It analyzed pulse wave form on its first and second derivative with respect to time. The zeros of the first derivative of the pulse wave allow to set aside time in systolic rise. A minimum of the second derivative corresponds to the end of the phase and the beginning of the slow pressure build-up in the systole. Using the first and second derivative of the pulse wave made it possible to separately analyze the pulse wave form phase of rapid and slow pressure increase phase during systolic expansion. It has been established that the presence of anomalies in the form of the pulse wave in combination with vagotonic nervous regulation of the cardiovascular system of a patient is a sign of danger collapse of circulation during physical exercise.
-
Cytokines as indicators of the state of the organism in infectious diseases. Experimental data analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1409-1426When person`s diseases is result of bacterial infection, various characteristics of the organism are used for observation the course of the disease. Currently, one of these indicators is dynamics of cytokine concentrations are produced, mainly by cells of the immune system. There are many types of these low molecular weight proteins in human body and many species of animals. The study of cytokines is important for the interpretation of functional disorders of the body's immune system, assessment of the severity, monitoring the effectiveness of therapy, predicting of the course and outcome of treatment. Cytokine response of the body indicating characteristics of course of disease. For research regularities of such indication, experiments were conducted on laboratory mice. Experimental data are analyzed on the development of pneumonia and treatment with several drugs for bacterial infection of mice. As drugs used immunomodulatory drugs “Roncoleukin”, “Leikinferon” and “Tinrostim”. The data are presented by two types cytokines` concentration in lung tissue and animal blood. Multy-sided statistical ana non statistical analysis of the data allowed us to find common patterns of changes in the “cytokine profile” of the body and to link them with the properties of therapeutic preparations. The studies cytokine “Interleukin-10” (IL-10) and “Interferon Gamma” (IFN$\gamma$) in infected mice deviate from the normal level of infact animals indicating the development of the disease. Changes in cytokine concentrations in groups of treated mice are compared with those in a group of healthy (not infected) mice and a group of infected untreated mice. The comparison is made for groups of individuals, since the concentrations of cytokines are individual and differ significantly in different individuals. Under these conditions, only groups of individuals can indicate the regularities of the processes of the course of the disease. These groups of mice were being observed for two weeks. The dynamics of cytokine concentrations indicates characteristics of the disease course and efficiency of used therapeutic drugs. The effect of a medicinal product on organisms is monitored by the location of these groups of individuals in the space of cytokine concentrations. The Hausdorff distance between the sets of vectors of cytokine concentrations of individuals is used in this space. This is based on the Euclidean distance between the elements of these sets. It was found that the drug “Roncoleukin” and “Leukinferon” have a generally similar and different from the drug “Tinrostim” effect on the course of the disease.
Keywords: data processing, experiment, cytokine, immune system, pneumonia, statistics, approximation, Hausdorff distance. -
Optimization of the brain command dictionary based on the statistical proximity criterion in silent speech recognition task
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 675-690In our research, we focus on the problem of classification for silent speech recognition to develop a brain– computer interface (BCI) based on electroencephalographic (EEG) data, which will be capable of assisting people with mental and physical disabilities and expanding human capabilities in everyday life. Our previous research has shown that the silent pronouncing of some words results in almost identical distributions of electroencephalographic signal data. Such a phenomenon has a suppressive impact on the quality of neural network model behavior. This paper proposes a data processing technique that distinguishes between statistically remote and inseparable classes in the dataset. Applying the proposed approach helps us reach the goal of maximizing the semantic load of the dictionary used in BCI.
Furthermore, we propose the existence of a statistical predictive criterion for the accuracy of binary classification of the words in a dictionary. Such a criterion aims to estimate the lower and the upper bounds of classifiers’ behavior only by measuring quantitative statistical properties of the data (in particular, using the Kolmogorov – Smirnov method). We show that higher levels of classification accuracy can be achieved by means of applying the proposed predictive criterion, making it possible to form an optimized dictionary in terms of semantic load for the EEG-based BCIs. Furthermore, using such a dictionary as a training dataset for classification problems grants the statistical remoteness of the classes by taking into account the semantic and phonetic properties of the corresponding words and improves the classification behavior of silent speech recognition models.
-
Modeling of behavior of panicked crowd in multi-floor branched space
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 491-508Views (last year): 7. Citations: 10 (RSCI).The collective behavior of crowd leaving a room is modeled. The model is based on molecular dynamics approach with a mixture of socio-psychological and physical forces. The new algorithm for complicatedly branched space is proposed. It suggests that each individual develops its own plan of escape, which is stochastically transformed during the evolution. The algorithm includes also the separation of original space into rooms with possible exits selected by individuals according to their probability distribution. The model is calibrated on the base of empirical data provided by fire case in the nightclub “Lame Horse” (Perm, 2009). The algorithm is realized as an end-user Java software. It is assumed that this tool could help to test the buildings for their safety for humans.
-
Analysis of the effectiveness of machine learning methods in the problem of gesture recognition based on the data of electromyographic signals
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 175-194Gesture recognition is an urgent challenge in developing systems of human-machine interfaces. We analyzed machine learning methods for gesture classification based on electromyographic muscle signals to identify the most effective one. Methods such as the naive Bayesian classifier (NBC), logistic regression, decision tree, random forest, gradient boosting, support vector machine (SVM), $k$-nearest neighbor algorithm, and ensembles (NBC and decision tree, NBC and gradient boosting, gradient boosting and decision tree) were considered. Electromyography (EMG) was chosen as a method of obtaining information about gestures. This solution does not require the location of the hand in the field of view of the camera and can be used to recognize finger movements. To test the effectiveness of the selected methods of gesture recognition, a device was developed for recording the EMG signal, which includes three electrodes and an EMG sensor connected to the microcontroller and the power supply. The following gestures were chosen: clenched fist, “thumb up”, “Victory”, squeezing an index finger and waving a hand from right to left. Accuracy, precision, recall and execution time were used to evaluate the effectiveness of classifiers. These parameters were calculated for three options for the location of EMG electrodes on the forearm. According to the test results, the most effective methods are $k$-nearest neighbors’ algorithm, random forest and the ensemble of NBC and gradient boosting, the average accuracy of ensemble for three electrode positions was 81.55%. The position of the electrodes was also determined at which machine learning methods achieve the maximum accuracy. In this position, one of the differential electrodes is located at the intersection of the flexor digitorum profundus and flexor pollicis longus, the second — above the flexor digitorum superficialis.
-
Extracting knowledge from text messages: overview and state-of-the-art
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.
-
Generating database schema from requirement specification based on natural language processing and large language model
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1703-1713A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




