Processing math: 9%
Результаты поиска по 'information search':
Найдено статей: 14
  1. Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1533-1538
  2. Berger A.I., Guda S.A.
    Optimal threshold selection algorithms for multi-label classification: property study
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1221-1238

    Multi-label classification models arise in various areas of life, which is explained by an increasing amount of information that requires prompt analysis. One of the mathematical methods for solving this problem is a plug-in approach, at the first stage of which, for each class, a certain ranking function is built, ordering all objects in some way, and at the second stage, the optimal thresholds are selected, the objects on one side of which are assigned to the current class, and on the other — to the other. Thresholds are chosen to maximize the target quality measure. The algorithms which properties are investigated in this article are devoted to the second stage of the plug-in approach which is the choice of the optimal threshold vector. This step becomes non-trivial if the F-measure of average precision and recall is used as the target quality assessment since it does not allow independent threshold optimization in each class. In problems of extreme multi-label classification, the number of classes can reach hundreds of thousands, so the original optimization problem is reduced to the problem of searching a fixed point of a specially introduced transformation \boldsymbol V, defined on a unit square on the plane of average precision P and recall R. Using this transformation, two algorithms are proposed for optimization: the F-measure linearization method and the method of \boldsymbol V domain analysis. The properties of algorithms are studied when applied to multi-label classification data sets of various sizes and origin, in particular, the dependence of the error on the number of classes, on the F-measure parameter, and on the internal parameters of methods under study. The peculiarity of both algorithms work when used for problems with the domain of \boldsymbol V, containing large linear boundaries, was found. In case when the optimal point is located in the vicinity of these boundaries, the errors of both methods do not decrease with an increase in the number of classes. In this case, the linearization method quite accurately determines the argument of the optimal point, while the method of \boldsymbol V domain analysis — the polar radius.

  3. Adekotujo A.S., Enikuomehin T., Aribisala B., Mazzara M., Zubair A.F.
    Computational treatment of natural language text for intent detection
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1539-1554

    Intent detection plays a crucial role in task-oriented conversational systems. To understand the user’s goal, the system relies on its intent detector to classify the user’s utterance, which may be expressed in different forms of natural language, into intent classes. However, lack of data, and the efficacy of intent detection systems has been hindered by the fact that the user’s intent text is typically characterized by short, general sentences and colloquial expressions. The process of algorithmically determining user intent from a given statement is known as intent detection. The goal of this study is to develop an intent detection model that will accurately classify and detect user intent. The model calculates the similarity score of the three models used to determine their similarities. The proposed model uses Contextual Semantic Search (CSS) capabilities for semantic search, Latent Dirichlet Allocation (LDA) for topic modeling, the Bidirectional Encoder Representations from Transformers (BERT) semantic matching technique, and the combination of LDA and BERT for text classification and detection. The dataset acquired is from the broad twitter corpus (BTC) and comprises various meta data. To prepare the data for analysis, a pre-processing step was applied. A sample of 1432 instances were selected out of the 5000 available datasets because manual annotation is required and could be time-consuming. To compare the performance of the model with the existing model, the similarity scores, precision, recall, f1 score, and accuracy were computed. The results revealed that LDA-BERT achieved an accuracy of 95.88% for intent detection, BERT with an accuracy of 93.84%, and LDA with an accuracy of 92.23%. This shows that LDA-BERT performs better than other models. It is hoped that the novel model will aid in ensuring information security and social media intelligence. For future work, an unsupervised LDA-BERT without any labeled data can be studied with the model.

  4. Khudhur H.M., Halil I.H.
    Noise removal from images using the proposed three-term conjugate gradient algorithm
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853

    Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).

  5. Bazarova A.I., Beznosikov A.N., Gasnikov A.V.
    Linearly convergent gradient-free methods for minimization of parabolic approximation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255

    Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.

    In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate \log(1/\varepsilon) to a global minimum on the cube.

    In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.

    Experimental results confirm the efficiency and practical applicability of all the obtained methods.

  6. Cheremisina E.N., Senner A.E.
    The use of GIS INTEGRO in searching tasks for oil and gas deposits
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 439-444

    GIS INTEGRO is the geo-information software system forming the basis for the integrated interpretation of geophysical data in researching a deep structure of Earth. GIS INTEGRO combines a variety of computational and analytical applications for the solution of geological and geophysical problems. It includes various interfaces that allow you to change the form of representation of data (raster, vector, regular and irregular network of observations), the conversion unit of map projections, application blocks, including block integrated data analysis and decision prognostic and diagnostic tasks.

    The methodological approach is based on integration and integrated analysis of geophysical data on regional profiles, geophysical potential fields and additional geological information on the study area. Analytical support includes packages transformations, filtering, statistical processing, calculation, finding of lineaments, solving direct and inverse tasks, integration of geographic information.

    Technology and software and analytical support was tested in solving problems tectonic zoning in scale 1:200000, 1:1000000 in Yakutia, Kazakhstan, Rostov region, studying the deep structure of regional profiles 1:S, 1-SC, 2-SAT, 3-SAT and 2-DV, oil and gas forecast in the regions of Eastern Siberia, Brazil.

    The article describes two possible approaches of parallel calculations for data processing 2D or 3D nets in the field of geophysical research. As an example presented realization in the environment of GRID of the application software ZondGeoStat (statistical sensing), which create 3D net model on the basis of data 2d net. The experience has demonstrated the high efficiency of the use of environment of GRID during realization of calculations in field of geophysical researches.

    Views (last year): 4.
  7. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  8. Kalmykov L.V., Kalmykov V.L.
    Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293

    Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.

    Views (last year): 16. Citations: 3 (RSCI).
  9. Petrov A.P., Podlipskaia O.G., Pronchev G.B.
    Modeling the dynamics of public attention to extended processes on the example of the COVID-19 pandemic
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1131-1141

    The dynamics of public attention to COVID-19 epidemic is studied. The level of public attention is described by the daily number of search requests in Google made by users from a given country. In the empirical part of the work, data on the number of requests and the number of infected cases for a number of countries are considered. It is shown that in all cases the maximum of public attention occurs earlier than the maximum daily number of newly infected individuals. Thus, for a certain period of time, the growth of the epidemics occurs in parallel with the decline in public attention to it. It is also shown that the decline in the number of requests is described by an exponential function of time. In order to describe the revealed empirical pattern, a mathematical model is proposed, which is a modification of the model of the decline in attention after a one-time political event. The model develops the approach that considers decision-making by an individual as a member of the society in which the information process takes place. This approach assumes that an individual’s decision about whether or not to make a request on a given day about COVID is based on two factors. One of them is an attitude that reflects the individual’s long-term interest in a given topic and accumulates the individual’s previous experience, cultural preferences, social and economic status. The second is the dynamic factor of public attention to the epidemic, which changes during the process under consideration under the influence of informational stimuli. With regard to the subject under consideration, information stimuli are related to epidemic dynamics. The behavioral hypothesis is that if on some day the sum of the attitude and the dynamic factor exceeds a certain threshold value, then on that day the individual in question makes a search request on the topic of COVID. The general logic is that the higher the rate of infection growth, the higher the information stimulus, the slower decreases public attention to the pandemic. Thus, the constructed model made it possible to correlate the rate of exponential decrease in the number of requests with the rate of growth in the number of cases. The regularity found with the help of the model was tested on empirical data. It was found that the Student’s statistic is 4.56, which allows us to reject the hypothesis of the absence of a correlation with a significance level of 0.01.

  10. Makarov I.S., Bagantsova E.R., Iashin P.A., Kovaleva M.D., Zakharova E.M.
    Development of and research into a rigid algorithm for analyzing Twitter publications and its influence on the movements of the cryptocurrency market
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 157-170

    Social media is a crucial indicator of the position of assets in the financial market. The paper describes the rigid solution for the classification problem to determine the influence of social media activity on financial market movements. Reputable crypto traders influencers are selected. Twitter posts packages are used as data. The methods of text, which are characterized by the numerous use of slang words and abbreviations, and preprocessing consist in lemmatization of Stanza and the use of regular expressions. A word is considered as an element of a vector of a data unit in the course of solving the problem of binary classification. The best markup parameters for processing Binance candles are searched for. Methods of feature selection, which is necessary for a precise description of text data and the subsequent process of establishing dependence, are represented by machine learning and statistical analysis. First, the feature selection is used based on the information criterion. This approach is implemented in a random forest model and is relevant for the task of feature selection for splitting nodes in a decision tree. The second one is based on the rigid compilation of a binary vector during a rough check of the presence or absence of a word in the package and counting the sum of the elements of this vector. Then a decision is made depending on the superiority of this sum over the threshold value that is predetermined previously by analyzing the frequency distribution of mentions of the word. The algorithm used to solve the problem was named benchmark and analyzed as a tool. Similar algorithms are often used in automated trading strategies. In the course of the study, observations of the influence of frequently occurring words, which are used as a basis of dimension 2 and 3 in vectorization, are described as well.

Pages: next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"