Результаты поиска по 'jerk':
Найдено статей: 2
  1. Ivanov V.M.
    Simulation model of spline interpolation of piecewise linear trajectory for CNC machine tools
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 225-242

    In traditional CNC systems, each segment of a piecewise linear trajectory is described by a separate block of the control program. In this case, a trapezoidal trajectory of movement is formed, and the stitching of individual sections is carried out at zero values of speed and acceleration. Increased productivity is associated with continuous processing, which in modern CNC systems is achieved through the use of spline interpolation. For a piecewise linear trajectory, which is basic for most products, the most appropriate is a first-degree spline. However, even in the simplest case of spline interpolation, the closed nature of the basic software from leading manufacturers of CNC systems limits the capabilities of not only developers, but also users. Taking this into account, the purpose of this work is a detailed study of the structural organization and operation algorithms of the simulation model of piecewise linear spline interpolation. Limitations on jerk and acceleration are considered as the main measure to reduce dynamic processing errors. In this case, special attention is paid to the S-shaped shape of the speed curve in the acceleration and deceleration sections. This is due to the conditions for the implementation of spline interpolation, one of which is the continuity of movement, which is ensured by the equality of the first and second derivatives when joining sections of the trajectory. Such a statement corresponds to the principles of implementing combined control systems of a servo electric drive, which provide partial invariance to control and disturbing effects. The reference model of a spline interpolator is adopted as the basis of the structural organization. The issues of processing scaling, which are based on a decrease in the vector speed in relation to the base value, are also considered. This allows increasing the accuracy of movements. It is shown that the range of changes in the speed of movements can be more than ten thousand, and is limited only by the speed control capabilities of the actuators.

  2. Rozenblat G.M., Yashina M.V.
    Numerical and analytical study of the motion of Maxwell’s pendulum
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 123-136

    The article considers the problem of the stability of the vertical position of a Maxwell pendulum during its periodic up-down movements. Two types of transition movements are considered: “stop” — occurs when the body of the pendulum in its highest position on the string (during its “standard” upward movement) stops for a moment; “two-link pendulum” — occurs when the entire thread from the body of the pendulum is selected (the lowest position of the body on the thread during its “standard” downward movement), and the body is forced to rotate relative to the thread around the point of its attachment to the body. It is shown that for any values of the pendulum parameters, this position is unstable in the sense that oscillations of the thread around the vertical of finite amplitude occur in the system for arbitrarily small initial deviations. In addition, it has been established that no shock phenomena occur during the movement of the Maxwell pendulum, and the model of this pendulum itself, with the values of its parameters often used in the literature, is incorrect according to Hadamard. In this work, it is shown that the vertical position of the pendulum threads during the indicated oscillatory movements of the body along the threads for any non-degenerate values of the parameters of the Maxwell pendulum is always unstable in the above sense. Moreover, this instability is caused precisely by transitional movements of the 2nd type. In this work, it is further shown that no jumps in speeds or accelerations (due to which shocks or “jerks” in the tension of the threads can occur) do not occur during the indicated movements of the Maxwell pendulum model under consideration. In our opinion, the “jerks” observed in the experiments are due to other reasons, for example, the technical imperfection of the instruments on which the experiments were carried out.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"