Результаты поиска по 'linear splines':
Найдено статей: 3
  1. Ivanov V.M.
    Simulation model of spline interpolation of piecewise linear trajectory for CNC machine tools
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 225-242

    In traditional CNC systems, each segment of a piecewise linear trajectory is described by a separate block of the control program. In this case, a trapezoidal trajectory of movement is formed, and the stitching of individual sections is carried out at zero values of speed and acceleration. Increased productivity is associated with continuous processing, which in modern CNC systems is achieved through the use of spline interpolation. For a piecewise linear trajectory, which is basic for most products, the most appropriate is a first-degree spline. However, even in the simplest case of spline interpolation, the closed nature of the basic software from leading manufacturers of CNC systems limits the capabilities of not only developers, but also users. Taking this into account, the purpose of this work is a detailed study of the structural organization and operation algorithms of the simulation model of piecewise linear spline interpolation. Limitations on jerk and acceleration are considered as the main measure to reduce dynamic processing errors. In this case, special attention is paid to the S-shaped shape of the speed curve in the acceleration and deceleration sections. This is due to the conditions for the implementation of spline interpolation, one of which is the continuity of movement, which is ensured by the equality of the first and second derivatives when joining sections of the trajectory. Such a statement corresponds to the principles of implementing combined control systems of a servo electric drive, which provide partial invariance to control and disturbing effects. The reference model of a spline interpolator is adopted as the basis of the structural organization. The issues of processing scaling, which are based on a decrease in the vector speed in relation to the base value, are also considered. This allows increasing the accuracy of movements. It is shown that the range of changes in the speed of movements can be more than ten thousand, and is limited only by the speed control capabilities of the actuators.

  2. Novikova O.B.
    Fractal spline as a model of fractal functions for fractal signals generation
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 583-587

    This paper presents a method for obtaining fractal signals using fractal splines similar to signals generated by fractal functions. The hypothesis about the identity of discrete fractal functions and linear fractal splines is justified. There are considered the features of planning matrix calculation of cumulative fractal spline, examples of generated curves are shown.

    Views (last year): 2.
  3. Lelekov A.S., Trenkenshu R.P.
    Modeling of the macromolecular composition dynamics of microalgae batch culture
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 739-756

    The work focuses on mathematical modeling of light influence mechanisms on macromolecular composition of microalgae batch culture. It is shown that even with a single limiting factor, the growth of microalgae is associated with a significant change in the biochemical composition of the biomass in any part of the batch curve. The well-known qualitative models of microalgae are based on concepts of enzymatic kinetics and do not take into account the possible change of the limiting factor during batch culture growth. Such models do not allow describing the dynamics of the relative content of biochemical components of cells. We proposed an alternative approach which is based on generally accepted two-stage photoautotrophic growth of microalgae. Microalgae biomass can be considered as the sum of two macromolecular components — structural and reserve. At the first stage, during photosynthesis a reserve part of biomass is formed, from which the biosynthesis of cell structures occurs at the second stage. Model also assumes the proportionality of all biomass structural components which greatly simplifies mathematical calculations and experimental data fitting. The proposed mathematical model is represented by a system of two differential equations describing the synthesis of reserve biomass compounds at the expense of light and biosynthesis of structural components from reserve ones. The model takes into account that a part of the reserve compounds is spent on replenishing the pool of macroergs. The rates of synthesis of structural and reserve forms of biomass are given by linear splines. Such approach allows us to mathematically describe the change in the limiting factor with an increase in the biomass of the enrichment culture of microalgae. It is shown that under light limitation conditions the batch curve must be divided into several areas: unlimited growth, low cell concentration and optically dense culture. The analytical solutions of the basic system of equations describing the dynamics of macromolecular biomass content made it possible to determine species-specific coefficients for various light conditions. The model was verified on the experimental data of biomass growth and dynamics of chlorophyll $a$ content of the red marine microalgae Pоrphуridium purpurеum batch culture.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"