Результаты поиска по 'linearization method':
Найдено статей: 139
  1. Ainbinder R.M., Rassadin A.E.
    On population migration in an ecological niche with a spatially heterogeneous local capacity
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 483-500

    The article describes the migration process of a certain population, taking into account the spatial heterogeneity of the local capacity of the ecological niche. It is assumed that this spatial heterogeneity is caused by various natural or artificial factors. The mathematical model of the migration process under consideration is a Cauchy problem on a straight line for some quasi-linear partial differential equation of the first order, which is satisfied by the linear population density under consideration. In this paper, a general solution to this Cauchy problem is found for an arbitrary dependence of the local capacity of an ecological niche on the spatial coordinate. This general solution was applied to describe the migration of the population in question in two different cases: in the case of a dependence of the local capacity of the ecological niche on the spatial coordinate in the form of a smooth step and in the case of a hill-like dependence of the local capacity of the ecological niche on the spatial coordinate. In both cases, the solution to the Cauchy problem is expressed in terms of higher transcendental functions. By applying special relations to the model parameters, these higher transcendental functions are reduced to elementary functions, which makes it possible to obtain exact model solutions explicitly expressed in terms of elementary functions. With the help of these precise solutions, an extensive program of computational experiments has been implemented, showing how the initial population density of the Gaussian form is dispersed by the considered two types of spatial heterogeneity of the local capacity of the ecological niche. These computational experiments have shown that when passing through both step-like and hill-like spatial inhomogeneities of the local capacity of an ecological niche with a narrow Gaussian width of its initial density compared to the characteristic spatial scale of these inhomogeneities, the system forgets its initial state. In particular, if we interpret the system under study as a population living in an extended calm rectilinear river along its bed, then it can be argued that under this initial condition, after the current of this river carries the population under consideration through the area of spatial heterogeneity of the local capacity of the ecological niche, the population density becomes a quasi-rectangular function.

  2. Kalmykov L.V., Kalmykov V.L.
    Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293

    Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.

    Views (last year): 16. Citations: 3 (RSCI).
  3. Galochkina T.V., Volpert V.A.
    Mathematical modeling of thrombin propagation during blood coagulation
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 469-486

    In case of vessel wall damage or contact of blood plasma with a foreign surface, the chain of chemical reactions called coagulation cascade is launched that leading to the formation of a fibrin clot. A key enzyme of the coagulation cascade is thrombin, which catalyzes formation of fibrin from fibrinogen. The distribution of thrombin concentration in blood plasma determines spatio-temporal dynamics of clot formation. Contact pathway of blood coagulation triggers the production of thrombin in response to the contact with a negatively charged surface. If the concentration of thrombin generated at this stage is large enough, further production of thrombin takes place due to positive feedback loops of the coagulation cascade. As a result, thrombin propagates in plasma cleaving fibrinogen that results in the clot formation. The concentration profile and the speed of propagation of thrombin are constant and do not depend on the type of the initial activator.

    Such behavior of the coagulation system is well described by the traveling wave solutions in a system of “reaction – diffusion” equations on the concentration of blood factors involved in the coagulation cascade. In this study, we carried out detailed analysis of the mathematical model describing the main reaction of the intrinsic pathway of coagulation cascade.We formulate necessary and sufficient conditions of the existence of the traveling wave solutions. For the considered model the existence of such solutions is equivalent to the existence of the wave solutions in the simplified one-equation model describing the dynamics of thrombin concentration derived under the quasi-stationary approximation.

    Simplified model also allows us to obtain analytical estimate of the thrombin propagation rate in the considered model. The speed of the traveling wave for one equation is estimated using the narrow reaction zone method and piecewise linear approximation. The resulting formulas give a good approximation of the velocity of propagation of thrombin in the simplified, as well as in the original model.

    Views (last year): 10. Citations: 1 (RSCI).
  4. Shokirov F.S.
    Interaction of a breather with a domain wall in a two-dimensional O(3) nonlinear sigma model
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 773-787

    By numerical simulation methods the interaction processes of oscillating soliton (breather) with a 180-degree Neel domain wall in the framework of a (2 + 1)-dimensional supersymmetric O(3) nonlinear sigma model is studied. The purpose of this paper is to investigate nonlinear evolution and stability of a system of interacting localized dynamic and topological solutions. To construct the interaction models, were used a stationary breather and domain wall solutions, where obtained in the framework of the two-dimensional sine-Gordon equation by adding specially selected perturbations to the A3-field vector in the isotopic space of the Bloch sphere. In the absence of an external magnetic field, nonlinear sigma models have formal Lorentz invariance, which allows constructing, in particular, moving solutions and analyses the experimental data of the nonlinear dynamics of an interacting solitons system. In this paper, based on the obtained moving localized solutions, models for incident and head-on collisions of breathers with a domain wall are constructed, where, depending on the dynamic parameters of the system, are observed the collisions and reflections of solitons from each other, a long-range interactions and also the decay of an oscillating soliton into linear perturbation waves. In contrast to the breather solution that has the dynamics of the internal degree of freedom, the energy integral of a topologically stable soliton in the all experiments the preserved with high accuracy. For each type of interaction, the range of values of the velocity of the colliding dynamic and topological solitons is determined as a function of the rotation frequency of the A3-field vector in the isotopic space. Numerical models are constructed on the basis of methods of the theory of finite difference schemes, using the properties of stereographic projection, taking into account the group-theoretical features of constructions of the O(N) class of nonlinear sigma models of field theory. On the perimeter of the two-dimensional modeling area, specially developed boundary conditions are established that absorb linear perturbation waves radiated by interacting soliton fields. Thus, the simulation of the interaction processes of localized solutions in an infinite two-dimensional phase space is carried out. A software module has been developed that allows to carry out a complex analysis of the evolution of interacting solutions of nonlinear sigma models of field theory, taking into account it’s group properties in a two-dimensional pseudo-Euclidean space. The analysis of isospin dynamics, as well the energy density and energy integral of a system of interacting dynamic and topological solitons is carried out.

    Views (last year): 6.
  5. Nevmerzhitskiy Y.V.
    Application of the streamline method for nonlinear filtration problems acceleration
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 709-728

    The paper contains numerical simulation of nonisothermal nonlinear flow in a porous medium. Twodimensional unsteady problem of heavy oil, water and steam flow is considered. Oil phase consists of two pseudocomponents: light and heavy fractions, which like the water component, can vaporize. Oil exhibits viscoplastic rheology, its filtration does not obey Darcy's classical linear law. Simulation considers not only the dependence of fluids density and viscosity on temperature, but also improvement of oil rheological properties with temperature increasing.

    To solve this problem numerically we use streamline method with splitting by physical processes, which consists in separating the convective heat transfer directed along filtration from thermal conductivity and gravitation. The article proposes a new approach to streamline methods application, which allows correctly simulate nonlinear flow problems with temperature-dependent rheology. The core of this algorithm is to consider the integration process as a set of quasi-equilibrium states that are results of solving system on a global grid. Between these states system solved on a streamline grid. Usage of the streamline method allows not only to accelerate calculations, but also to obtain a physically reliable solution, since integration takes place on a grid that coincides with the fluid flow direction.

    In addition to the streamline method, the paper presents an algorithm for nonsmooth coefficients accounting, which arise during simulation of viscoplastic oil flow. Applying this algorithm allows keeping sufficiently large time steps and does not change the physical structure of the solution.

    Obtained results are compared with known analytical solutions, as well as with the results of commercial package simulation. The analysis of convergence tests on the number of streamlines, as well as on different streamlines grids, justifies the applicability of the proposed algorithm. In addition, the reduction of calculation time in comparison with traditional methods demonstrates practical significance of the approach.

    Views (last year): 18.
  6. Tukmakov D.A.
    Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154

    The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.

  7. Ososkov G.A., Bakina O.V., Baranov D.A., Goncharov P.V., Denisenko I.I., Zhemchugov A.S., Nefedov Y.A., Nechaevskiy A.V., Nikolskaya A.N., Shchavelev E.M., Wang L., Sun S., Zhang Y.
    Tracking on the BESIII CGEM inner detector using deep learning
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381

    The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.

    The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.

    In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.

    The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.

  8. Malikov Z.M., Nazarov F.K., Madaliev M.E.
    Numerical study of Taylor – Cuetta turbulent flow
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 395-408

    In this paper, the turbulent Taylor – Couette flow is investigated using two-dimensional modeling based on the averaged Navier – Stokes (RANS) equations and a new two-fluid approach to turbulence at Reynolds numbers in the range from 1000 to 8000. The flow due to a rotating internal and stationary external cylinders. The case of ratio of cylinder diameters 1:2 is considered. It is known that the emerging circular flow is characterized by anisotropic turbulence and mathematical modeling of such flows is a difficult task. To describe such flows, either direct modeling methods are used, which require large computational costs, or rather laborious Reynolds stress methods, or linear RANS models with special corrections for rotation, which are able to describe anisotropic turbulence. In order to compare different approaches to turbulence modeling, the paper presents the numerical results of linear RANS models SARC, SST-RC, Reynolds stress method SSG/LRR-RSM-w2012, DNS direct turbulence modeling, as well as a new two-fluid model. It is shown that the recently developed twofluid model adequately describes the considered flow. In addition, the two-fluid model is easy to implement numerically and has good convergence.

  9. Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

  10. Kazarnikov A.V.
    Analysing the impact of migration on background social strain using a continuous social stratification model
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 661-673

    The background social strain of a society can be quantitatively estimated using various statistical indicators. Mathematical models, allowing to forecast the dynamics of social strain, are successful in describing various social processes. If the number of interacting groups is small, the dynamics of the corresponding indicators can be modelled with a system of ordinary differential equations. The increase in the number of interacting components leads to the growth of complexity, which makes the analysis of such models a challenging task. A continuous social stratification model can be considered as a result of the transition from a discrete number of interacting social groups to their continuous distribution in some finite interval. In such a model, social strain naturally spreads locally between neighbouring groups, while in reality, the social elite influences the whole society via news media, and the Internet allows non-local interaction between social groups. These factors, however, can be taken into account to some extent using the term of the model, describing negative external influence on the society. In this paper, we develop a continuous social stratification model, describing the dynamics of two societies connected through migration. We assume that people migrate from the social group of donor society with the highest strain level to poorer social layers of the acceptor society, transferring the social strain at the same time. We assume that all model parameters are constants, which is a realistic assumption for small societies only. By using the finite volume method, we construct the spatial discretization for the problem, capable of reproducing finite propagation speed of social strain. We verify the discretization by comparing the results of numerical simulations with the exact solutions of the auxiliary non-linear diffusion equation. We perform the numerical analysis of the proposed model for different values of model parameters, study the impact of migration intensity on the stability of acceptor society, and find the destabilization conditions. The results, obtained in this work, can be used in further analysis of the model in the more realistic case of inhomogeneous coefficients.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"