Результаты поиска по 'method':
Найдено статей: 689
  1. Gasnikov A.V., Gorbunov E.A., Kovalev D.A., Mohammed A.A., Chernousova E.O.
    The global rate of convergence for optimal tensor methods in smooth convex optimization
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753

    In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).

    Views (last year): 75.
  2. Alkousa M.S.
    On some stochastic mirror descent methods for constrained online optimization problems
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217

    The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.

    Views (last year): 42.
  3. Rovenska O.G.
    Approximation of analytic functions by repeated de la Vallee Poussin sums
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 367-377

    The paper deals with the problems of approximation of periodic functions of high smoothness by arithmetic means of Fourier sums. The simplest and natural example of a linear process of approximation of continuous periodic functions of a real variable is the approximation of these functions by partial sums of the Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the entire class of continuous $2\pi$-periodic functions. In connection with this, a significant number of papers is devoted to the study of the approximative properties of other approximation methods, which are generated by certain transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for each function $f \in C$. In particular, over the past decades, de la Vallee Poussin sums and Fejer sums have been widely studied. One of the most important directions in this field is the study of the asymptotic behavior of upper bounds of deviations of arithmetic means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol’sky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk, etc.

    The aim of the work systematizes known results related to the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of $r$-repeated de la Vallee Poussin sums on the classes of periodic functions that can be regularly extended into the fixed strip of the complex plane. We obtain asymptotic formulas for upper bounds of the deviations of repeated de la Vallee Poussin sums taken over classes of periodic analytic functions. In certain cases, these formulas give a solution of the corresponding Kolmogorov–Nikolsky problem. We indicate conditions under which the repeated de la Vallee Poussin sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums.

    Views (last year): 45.
  4. Fasondini M., Hale N., Spoerer R., Weideman J.A.C.
    Quadratic Padé Approximation: Numerical Aspects and Applications
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1017-1031

    Padé approximation is a useful tool for extracting singularity information from a power series. A linear Padé approximant is a rational function and can provide estimates of pole and zero locations in the complex plane. A quadratic Padé approximant has square root singularities and can, therefore, provide additional information such as estimates of branch point locations. In this paper, we discuss numerical aspects of computing quadratic Padé approximants as well as some applications. Two algorithms for computing the coefficients in the approximant are discussed: a direct method involving the solution of a linear system (well-known in the mathematics community) and a recursive method (well-known in the physics community). We compare the accuracy of these two methods when implemented in floating-point arithmetic and discuss their pros and cons. In addition, we extend Luke’s perturbation analysis of linear Padé approximation to the quadratic case and identify the problem of spurious branch points in the quadratic approximant, which can cause a significant loss of accuracy. A possible remedy for this problem is suggested by noting that these troublesome points can be identified by the recursive method mentioned above. Another complication with the quadratic approximant arises in choosing the appropriate branch. One possibility, which is to base this choice on the linear approximant, is discussed in connection with an example due to Stahl. It is also known that the quadratic method is capable of providing reasonable approximations on secondary sheets of the Riemann surface, a fact we illustrate here by means of an example. Two concluding applications show the superiority of the quadratic approximant over its linear counterpart: one involving a special function (the Lambert $W$-function) and the other a nonlinear PDE (the continuation of a solution of the inviscid Burgers equation into the complex plane).

  5. Tyurin A.I.
    Primal-dual fast gradient method with a model
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 263-274

    In this work we consider a possibility to use the conception of $(\delta, L)$-model of a function for optimization tasks, whereby solving a primal problem there is a necessity to recover a solution of a dual problem. The conception of $(\delta, L)$-model is based on the conception of $(\delta, L)$-oracle which was proposed by Devolder–Glineur–Nesterov, herewith the authors proposed approximate a function with an upper bound using a convex quadratic function with some additive noise $\delta$. They managed to get convex quadratic upper bounds with noise even for nonsmooth functions. The conception of $(\delta, L)$-model continues this idea by using instead of a convex quadratic function a more complex convex function in an upper bound. Possibility to recover the solution of a dual problem gives great benefits in different problems, for instance, in some cases, it is faster to find a solution in a primal problem than in a dual problem. Note that primal-dual methods are well studied, but usually each class of optimization problems has its own primal-dual method. Our goal is to develop a method which can find solutions in different classes of optimization problems. This is realized through the use of the conception of $(\delta, L)$-model and adaptive structure of our methods. Thereby, we developed primal-dual adaptive gradient method and fast gradient method with $(\delta, L)$-model and proved convergence rates of the methods, moreover, for some classes of optimization problems the rates are optimal. The main idea is the following: we find a dual solution to an approximation of a primal problem using the conception of $(\delta, L)$-model. It is much easier to find a solution to an approximated problem, however, we have to do it in each step of our method, thereby the principle of “divide and conquer” is realized.

  6. The paper concerns the study of the Rice statistical distribution’s peculiarities which cause the possibility of its efficient application in solving the tasks of high precision phase measuring in optics. The strict mathematical proof of the Rician distribution’s stable character is provided in the example of the differential signal consideration, namely: it has been proved that the sum or the difference of two Rician signals also obey the Rice distribution. Besides, the formulas have been obtained for the parameters of the resulting summand or differential signal’s Rice distribution. Based upon the proved stable character of the Rice distribution a new original technique of the high precision measuring of the two quasi-harmonic signals’ phase shift has been elaborated in the paper. This technique is grounded in the statistical analysis of the measured sampled data for the amplitudes of the both signals and for the amplitude of the third signal which is equal to the difference of the two signals to be compared in phase. The sought-for phase shift of two quasi-harmonic signals is being calculated from the geometrical considerations as an angle of a triangle which sides are equal to the three indicated signals’ amplitude values having been reconstructed against the noise background. Thereby, the proposed technique of measuring the phase shift using the differential signal analysis, is based upon the amplitude measurements only, what significantly decreases the demands to the equipment and simplifies the technique implementation in practice. The paper provides both the strict mathematical substantiation of a new phase shift measuring technique and the results of its numerical testing. The elaborated method of high precision phase measurements may be efficiently applied for solving a wide circle of tasks in various areas of science and technology, in particular — at distance measuring, in communication systems, in navigation, etc.

  7. Gaiko V.A., Savin S.I., Klimchik A.S.
    Global limit cycle bifurcations of a polynomial Euler–Lagrange–Liénard system
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 693-705

    In this paper, using our bifurcation-geometric approach, we study global dynamics and solve the problem of the maximum number and distribution of limit cycles (self-oscillating regimes corresponding to states of dynamical equilibrium) in a planar polynomial mechanical system of the Euler–Lagrange–Liйnard type. Such systems are also used to model electrical, ecological, biomedical and other systems, which greatly facilitates the study of the corresponding real processes and systems with complex internal dynamics. They are used, in particular, in mechanical systems with damping and stiffness. There are a number of examples of technical systems that are described using quadratic damping in second-order dynamical models. In robotics, for example, quadratic damping appears in direct-coupled control and in nonlinear devices, such as variable impedance (resistance) actuators. Variable impedance actuators are of particular interest to collaborative robotics. To study the character and location of singular points in the phase plane of the Euler–Lagrange–Liйnard polynomial system, we use our method the meaning of which is to obtain the simplest (well-known) system by vanishing some parameters (usually, field rotation parameters) of the original system and then to enter sequentially these parameters studying the dynamics of singular points in the phase plane. To study the singular points of the system, we use the classical Poincarй index theorems, as well as our original geometric approach based on the application of the Erugin twoisocline method which is especially effective in the study of infinite singularities. Using the obtained information on the singular points and applying canonical systems with field rotation parameters, as well as using the geometric properties of the spirals filling the internal and external regions of the limit cycles and applying our geometric approach to qualitative analysis, we study limit cycle bifurcations of the system under consideration.

  8. Belkina E.A., Zhestov E.A., Shestakov A.V.
    Methods for resolving the Braess paradox in the presence of autonomous vehicles
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294

    Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.

  9. Ryabtsev A.B.
    The error accumulation in the conjugate gradient method for degenerate problem
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 459-472

    In this paper, we consider the conjugate gradient method for solving the problem of minimizing a quadratic function with additive noise in the gradient. Three concepts of noise were considered: antagonistic noise in the linear term, stochastic noise in the linear term and noise in the quadratic term, as well as combinations of the first and second with the last. It was experimentally obtained that error accumulation is absent for any of the considered concepts, which differs from the folklore opinion that, as in accelerated methods, error accumulation must take place. The paper gives motivation for why the error may not accumulate. The dependence of the solution error both on the magnitude (scale) of the noise and on the size of the solution using the conjugate gradient method was also experimentally investigated. Hypotheses about the dependence of the error in the solution on the noise scale and the size (2-norm) of the solution are proposed and tested for all the concepts considered. It turned out that the error in the solution (by function) linearly depends on the noise scale. The work contains graphs illustrating each individual study, as well as a detailed description of numerical experiments, which includes an account of the methods of noise of both the vector and the matrix.

  10. Spevak L.P., Nefedova O.A.
    Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22

    The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"