All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Modeling the thermal field of stationary symmetric bodies in rarefied low-temperature plasma
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 73-91The work investigates the process of self-consistent relaxation of the region of disturbances created in a rarefied binary low-temperature plasma by a stationary charged ball or cylinder with an absorbing surface. A feature of such problems is their self-consistent kinetic nature, in which it is impossible to separate the processes of transfer in phase space and the formation of an electromagnetic field. A mathematical model is presented that makes it possible to describe and analyze the state of the gas, electric and thermal fields in the vicinity of the body. The multidimensionality of the kinetic formulation creates certain problems in the numerical solution, therefore a curvilinear system of nonholonomic coordinates was selected for the problem, which minimizes its phase space, which contributes to increasing the efficiency of numerical methods. For such coordinates, the form of the Vlasov kinetic equation has been justified and analyzed. To solve it, a variant of the large particle method with a constant form factor was used. The calculations used a moving grid that tracks the displacement of the distribution function carrier in the phase space, which further reduced the volume of the controlled region of the phase space. Key details of the model and numerical method are revealed. The model and the method are implemented as code in the Matlab language. Using the example of solving a problem for a ball, the presence of significant disequilibrium and anisotropy in the particle velocity distribution in the disturbed zone is shown. Based on the calculation results, pictures of the evolution of the structure of the particle distribution function, profiles of the main macroscopic characteristics of the gas — concentration, current, temperature and heat flow, and characteristics of the electric field in the disturbed region are presented. The mechanism of heating of attracted particles in the disturbed zone is established and some important features of the process of formation of heat flow are shown. The results obtained are well explainable from a physical point of view, which confirms the adequacy of the model and the correct operation of the software tool. The creation and testing of a basis for the development in the future of tools for solving more complex problems of modeling the behavior of ionized gases near charged bodies is noted.
The work will be useful to specialists in the field of mathematical modeling, heat and mass transfer processes, lowtemperature plasma physics, postgraduate students and senior students specializing in the indicated areas.
-
Mathematical model and heuristic methods of distributed computations organizing in the Internet of Things systems
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 851-870Currently, a significant development has been observed in the direction of distributed computing theory, where computational tasks are solved collectively by resource-constrained devices. In practice, this scenario is implemented when processing data in Internet of Things systems, with the aim of reducing system latency and network infrastructure load, as data is processed on edge network computing devices. However, the rapid growth and widespread adoption of IoT systems raise questions about the need to develop methods for reducing the resource intensity of computations. The resource constraints of computing devices pose the following issues regarding the distribution of computational resources: firstly, the necessity to account for the transit cost between different devices solving various tasks; secondly, the necessity to consider the resource cost associated directly with the process of distributing computational resources, which is particularly relevant for groups of autonomous devices such as drones or robots. An analysis of modern publications available in open access demonstrated the absence of proposed models or methods for distributing computational resources that would simultaneously take into account all these factors, making the creation of a new mathematical model for organizing distributed computing in IoT systems and its solution methods topical. This article proposes a novel mathematical model for distributing computational resources along with heuristic optimization methods, providing an integrated approach to implementing distributed computing in IoT systems. A scenario is considered where there exists a leader device within a group that makes decisions concerning the allocation of computational resources, including its own, for distributed task resolution involving information exchanges. It is also assumed that no prior knowledge exists regarding which device will assume the role of leader or the migration paths of computational tasks across devices. Experimental results have shown the effectiveness of using the proposed models and heuristics: achieving up to a 52% reduction in resource costs for solving computational problems while accounting for data transit costs, saving up to 73% of resources through supplementary criteria optimizing task distribution based on minimizing fragment migrations and distances, and decreasing the resource cost of resolving the computational resource distribution problem by up to 28 times with reductions in distribution quality up to 10%.
-
Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759Views (last year): 12. Citations: 1 (RSCI).In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.
In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.
To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.
-
Searching stochastic equilibria in transport networks by universal primal-dual gradient method
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345Views (last year): 28.We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.
-
A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 67-85Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.
-
A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 965-978Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.
In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.
-
On the relations of stochastic convex optimization problems with empirical risk minimization problems on $p$-norm balls
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 309-319In this paper, we consider convex stochastic optimization problems arising in machine learning applications (e. g., risk minimization) and mathematical statistics (e. g., maximum likelihood estimation). There are two main approaches to solve such kinds of problems, namely the Stochastic Approximation approach (online approach) and the Sample Average Approximation approach, also known as the Monte Carlo approach, (offline approach). In the offline approach, the problem is replaced by its empirical counterpart (the empirical risk minimization problem). The natural question is how to define the problem sample size, i. e., how many realizations should be sampled so that the quite accurate solution of the empirical problem be the solution of the original problem with the desired precision. This issue is one of the main issues in modern machine learning and optimization. In the last decade, a lot of significant advances were made in these areas to solve convex stochastic optimization problems on the Euclidean balls (or the whole space). In this work, we are based on these advances and study the case of arbitrary balls in the $p$-norms. We also explore the question of how the parameter $p$ affects the estimates of the required number of terms as a function of empirical risk.
In this paper, both convex and saddle point optimization problems are considered. For strongly convex problems, the existing results on the same sample sizes in both approaches (online and offline) were generalized to arbitrary norms. Moreover, it was shown that the strong convexity condition can be weakened: the obtained results are valid for functions satisfying the quadratic growth condition. In the case when this condition is not met, it is proposed to use the regularization of the original problem in an arbitrary norm. In contradistinction to convex problems, saddle point problems are much less studied. For saddle point problems, the sample size was obtained under the condition of $\gamma$-growth of the objective function. When $\gamma = 1$, this condition is the condition of sharp minimum in convex problems. In this article, it was shown that the sample size in the case of a sharp minimum is almost independent of the desired accuracy of the solution of the original problem.
-
Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112Views (last year): 21. Citations: 2 (RSCI).The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.
As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.
-
A gradient method with inexact oracle for composite nonconvex optimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 321-334In this paper, we develop a new first-order method for composite nonconvex minimization problems with simple constraints and inexact oracle. The objective function is given as a sum of «hard», possibly nonconvex part, and «simple» convex part. Informally speaking, oracle inexactness means that, for the «hard» part, at any point we can approximately calculate the value of the function and construct a quadratic function, which approximately bounds this function from above. We give several examples of such inexactness: smooth nonconvex functions with inexact H¨older-continuous gradient, functions given by the auxiliary uniformly concave maximization problem, which can be solved only approximately. For the introduced class of problems, we propose a gradient-type method, which allows one to use a different proximal setup to adapt to the geometry of the feasible set, adaptively chooses controlled oracle error, allows for inexact proximal mapping. We provide a convergence rate for our method in terms of the norm of generalized gradient mapping and show that, in the case of an inexact Hölder-continuous gradient, our method is universal with respect to Hölder parameters of the problem. Finally, in a particular case, we show that the small value of the norm of generalized gradient mapping at a point means that a necessary condition of local minimum approximately holds at that point.
-
Languages in China provinces: quantitative estimation with incomplete data
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 707-716Views (last year): 3.This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




