All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 67-85Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.
-
Impact of spatial resolution on mobile robot path optimality in two-dimensional lattice models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1131-1148This paper examines the impact of the spatial resolution of a discretized (lattice) representation of the environment on the efficiency and correctness of optimal pathfinding in complex environments. Scenarios are considered that may include bottlenecks, non-uniform obstacle distributions, and areas of increased safety requirements in the immediate vicinity of obstacles. Despite the widespread use of lattice representations of the environment in robotics due to their compatibility with sensor data and support for classical trajectory planning algorithms, the resolution of these lattices has a significant impact on both goal reachability and optimal path performance. An algorithm is proposed that combines environmental connectivity analysis, trajectory optimization, and geometric safety refinement. In the first stage, the Leath algorithm is used to estimate the reachability of the target point by identifying a connected component containing the starting position. Upon confirmation of the target point’s reachability, the A* algorithm is applied to the nodes of this component in the second stage to construct a path that simultaneously minimizes both the path length and the risk of collision. In the third stage, a refined obstacle distance estimate is performed for nodes located in safety zones using a combination of the Gilbert – Johnson –Keerthi (GJK) and expanding polyhedron (EPA) algorithms. Experimental analysis revealed a nonlinear relationship between the probability of the existence and effectiveness of an optimal path and the lattice parameters. Specifically, reducing the spatial resolution of the lattice increases the likelihood of connectivity loss and target unreachability, while increasing its spatial resolution increases computational complexity without a proportional improvement in the optimal path’s performance.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




