Результаты поиска по 'networks':
Найдено статей: 134
  1. Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Faizrakhmanov E.M., Bolshakov T.E.
    Modeling of the effective environment in the Republic of Tatarstan using transport data
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404

    Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.

  2. Podlipnova I.V., Dorn Y.V., Sklonin I.A.
    Cloud interpretation of the entropy model for calculating the trip matrix
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 89-103

    As the population of cities grows, the need to plan for the development of transport infrastructure becomes more acute. For this purpose, transport modeling packages are created. These packages usually contain a set of convex optimization problems, the iterative solution of which leads to the desired equilibrium distribution of flows along the paths. One of the directions for the development of transport modeling is the construction of more accurate generalized models that take into account different types of passengers, their travel purposes, as well as the specifics of personal and public modes of transport that agents can use. Another important direction of transport models development is to improve the efficiency of the calculations performed. Since, due to the large dimension of modern transport networks, the search for a numerical solution to the problem of equilibrium distribution of flows along the paths is quite expensive. The iterative nature of the entire solution process only makes this worse. One of the approaches leading to a reduction in the number of calculations performed is the construction of consistent models that allow to combine the blocks of a 4-stage model into a single optimization problem. This makes it possible to eliminate the iterative running of blocks, moving from solving a separate optimization problem at each stage to some general problem. Early work has proven that such approaches provide equivalent solutions. However, it is worth considering the validity and interpretability of these methods. The purpose of this article is to substantiate a single problem, that combines both the calculation of the trip matrix and the modal choice, for the generalized case when there are different layers of demand, types of agents and classes of vehicles in the transport network. The article provides possible interpretations for the gauge parameters used in the problem, as well as for the dual factors associated with the balance constraints. The authors of the article also show the possibility of combining the considered problem with a block for determining network load into a single optimization problem.

  3. Pham C.T., Phan M.N., Tran T.T.
    Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938

    Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.

    To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.

  4. Konyukhov I.V., Konyukhov V.M., Chernitsa A.A., Dyussenova A.
    Analysis of the physics-informed neural network approach to solving ordinary differential equations
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636

    Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.

  5. Adamovskiy Y.R., Bohush R.P., Naumovich N.M.
    Prediction of frequency resource occupancy in a cognitive radio system using the Kolmogorov – Arnold neural network
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 109-123

    For cognitive radio systems, it is important to use efficient algorithms that search for free channels that can be provided to secondary users. Therefore, this paper is devoted to improving the accuracy of prediction frequency resource occupancy of a cellular communication system using spatiotemporal radio environment maps. The formation of a radio environment map is implemented for the fourthgeneration cellular communication system Long-Term Evolution. Taking this into account, a model structure has been developed that includes data generation and allows training and testing of an artificial neural network to predict the occupancy of frequency resources presented as the contents of radio environment map cells. A method for assessing prediction accuracy is described. The simulation model of the cellular communication system is implemented in the MatLab. The developed frequency resource occupancy prediction model is implemented in the Python. The complete file structure of the model is presented. The experiments were performed using artificial neural networks based on the Long Short-Term Memory and Kolmogorov – Arnold neural network architectures, taking into account its modification. It was found that with an equal number of parameters, the Kolmogorov –Arnold neural network learns faster for a given task. The obtained research results indicate an increase in the accuracy of prediction the occupancy of the frequency resource of the cellular communication system when using the Kolmogorov – Arnold neural network.

  6. Petrov I.B., Konov D.S., Vasyukov A.V., Muratov M.V.
    Detecting large fractures in geological media using convolutional neural networks
    Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901

    This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.

    he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.

    The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.

    The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.

    The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.

  7. Pavlov E.A., Osipov G.V.
    Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453

    The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.

    Citations: 3 (RSCI).
  8. Kondratyev M.A.
    Forecasting methods and models of disease spread
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882

    The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).

    Views (last year): 71. Citations: 19 (RSCI).
  9. Aristov A.O.
    Quasicellular networks and their application for simulation of visitor flow in public spaces
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 285-294

    Problems of application of quasicellular networks for simulation of flows of visitors in different public spaces are considered. Quasicellular networks are basic discrete structures without signature. Proposed approach may be used to create simulations on micro and macro levels. It also may be used for creating geometrical models. There are also multi-flow systems for simulation of sports fans in a sports arena, propagation of fire and poison in public spaces. This approach satisfies the requirements of MOE of Russia № 7-3-113.

    Views (last year): 2. Citations: 7 (RSCI).
  10. Prokoptsev N.G., Alekseenko A.E., Kholodov Y.A.
    Traffic flow speed prediction on transportation graph with convolutional neural networks
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367

    The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.

    Views (last year): 36.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"