All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Simulation of two-phase flow in porous media using an inhomogeneous network model
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 913-925We present an inhomogeneous two-dimensional network model of two-phase flow in porous media. The edges of the network are assumed to be capillary tubes of different radii. We propose a new algorithm for handling phase fluxes at the nodes of this network model. We perform two test problems and show that the two-phase flow in this inhomogeneous network model demonstrates properties that are analogous to those of real porous media: capillary imbibition, dependence of capillary pressure on saturation and effect of capillary forces in two-phase displacement. The two test problems are: the counter-current imbibition and the twophase displacement in a periodically inhomogeneous porous medium. In the former problem, we implement a network consisting of two regions: a region of low-permeability with thin capillaries surrounded by a region of high-permeability with thick capillaries, initially saturated with wetting and nonwetting incompressible fluids, respectively. Capillary equilibrium is established due to counter-current imbibition by a region. We examine the dependence: of saturation of the wetting fluid with respect to time in the regions, and of capillary pressure on the current saturation. We have obtained a qualitative agreement with the known experimental and theoretical results, which will further allow us to use this network model to verify homogenized models of capillary nonequilibrium. In the latter problem, we consider the two-phase displacement, where the network is initially saturated with nonwetting fluid. Then wetting fluid is injected through a boundary at a constant rate. We analyze the saturation with respect to the axis which is along the applied pressure gradient for various moments in time with various values of coefficients of surface tension. The results show that for lower values of coefficient of surface tension, the wetting fluid prefers to invade through the thicker tubes, and in the case of higher values, through thinner tubes.
-
Review of algorithmic solutions for deployment of neural networks on lite devices
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1601-1619In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and microcontrollers (MCUs) are becoming increasingly common. These devices are more energyefficient and affordable, often with reduced features compared to the standard versions such as very limited memory and processing power for typical machine learning models. However, modern machine learning models can have millions of parameters, resulting in a large memory footprint. This complexity not only makes it difficult to deploy these large models on resource constrained devices but also increases the risk of latency and inefficiency in processing, which is crucial in some cases where real-time responses are required such as autonomous driving and medical diagnostics. In recent years, neural networks have seen significant advancements in model optimization techniques that help deployment and inference on these small devices. This narrative review offers a thorough examination of the progression and latest developments in neural network optimization, focusing on key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It examines how these algorithmic solutions have progressed and how new approaches have improved upon the existing techniques making neural networks more efficient. This review is designed for machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods but wish to explore the available techniques. It highlights ongoing research in optimizing networks for achieving better performance, lowering energy consumption, and enabling faster training times, all of which play an important role in the continued scalability of neural networks. Additionally, it identifies gaps in current research and provides a foundation for future studies, aiming to enhance the applicability and effectiveness of existing optimization strategies.
-
Advanced neural network models for UAV-based image analysis in remote pathology monitoring of coniferous forests
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 641-663The key problems of remote forest pathology monitoring for coniferous forests affected by insect pests have been analyzed. It has been demonstrated that addressing these tasks requires the use of multiclass classification results for coniferous trees in high- and ultra-high-resolution images, which are promptly obtained through monitoring via satellites or unmanned aerial vehicles (UAVs). An analytical review of modern models and methods for multiclass classification of coniferous forest images was conducted, leading to the development of three fully convolutional neural network models: Mo-U-Net, At-Mo-U-Net, and Res-Mo-U-Net, all based on the classical U-Net architecture. Additionally, the Segformer transformer model was modified to suit the task. For RGB images of fir trees Abies sibirica affected by the four-eyed bark beetle Polygraphus proximus, captured using a UAV-mounted camera, two datasets were created: the first dataset contains image fragments and their corresponding reference segmentation masks sized 256 × 256 × 3 pixels, while the second dataset contains fragments sized 480 × 480 × 3 pixels. Comprehensive studies were conducted on each trained neural network model to evaluate both classification accuracy for assessing the degree of damage (health status) of Abies sibirica trees and computation speed using test datasets from each set. The results revealed that for fragments sized 256 × 256 × 3 pixels, the At-Mo-U-Net model with an attention mechanism is preferred alongside the Modified Segformer model. For fragments sized 480 × 480 × 3 pixels, the Res-Mo-U-Net hybrid model with residual blocks demonstrated superior performance. Based on classification accuracy and computation speed results for each developed model, it was concluded that, for production-scale multiclass classification of affected fir trees, the Res-Mo-U-Net model is the most suitable choice. This model strikes a balance between high classification accuracy and fast computation speed, meeting conflicting requirements effectively.
-
A new biometric approach and efficient system for automatic detection and analysis of digital retinal images
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 189-197Views (last year): 3.The program for automatic revealing of threshold values for characterizing physiological state of vessels and detection of early stages of retina pathology is offered. The algorithm is based on checking character of crossing sites of vessel images with the "mask" consisting of concentric circumferences (the first circumference is imposed directly on the sclera capsules of an optic nerve disk). The new method allows revealing of a network of blood vessels and flanking zones and detection of initial stage of pathological changes in a retina by digital images.
-
Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950Views (last year): 6. Citations: 2 (RSCI).In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.
Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).
-
Mathematical modelling of the non-Newtonian blood flow in the aortic arc
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269Views (last year): 13.The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.
-
Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 955-963Views (last year): 10. Citations: 1 (RSCI).А new cloud center of parallel computing is to be created in the Laboratory of Information Technologies (LIT) of the Joint Institute for Nuclear Research JINR) what is expected to improve significantly the efficiency of numerical calculations and expedite the receipt of new physically meaningful results due to the more rational use of computing resources. To optimize a scheme of parallel computations at a cloud environment it is necessary to test this scheme for various combinations of equipment parameters (processor speed and numbers, throughput оf а communication network etc). As a test problem, the parallel MPI algorithm for calculations of the long Josephson junctions (LDJ) is chosen. Problems of evaluating the impact of abovementioned factors of computing mean on the computing speed of the test problem are solved by simulation with the simulation program SyMSim developed in LIT.
The simulation of the LDJ calculations in the cloud environment enable users without a series of test to find the optimal number of CPUs with a certain type of network run the calculations in a real computer environment. This can save significant computational time in countable resources. The main parameters of the model were obtained from the results of the computational experiment conducted on a special cloud-based testbed. Computational experiments showed that the pure computation time decreases in inverse proportion to the number of processors, but depends significantly on network bandwidth. Comparison of results obtained empirically with the results of simulation showed that the simulation model correctly simulates the parallel calculations performed using the MPI-technology. Besides it confirms our recommendation: for fast calculations of this type it is needed to increase both, — the number of CPUs and the network throughput at the same time. The simulation results allow also to invent an empirical analytical formula expressing the dependence of calculation time by the number of processors for a fixed system configuration. The obtained formula can be applied to other similar studies, but requires additional tests to determine the values of variables.
-
Repressilator with time-delayed gene expression. Part I. Deterministic description
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 241-259Views (last year): 30.The repressor is the first genetic regulatory network in synthetic biology, which was artificially constructed in 2000. It is a closed network of three genetic elements — $lacI$, $\lambda cI$ and $tetR$, — which have a natural origin, but are not found in nature in such a combination. The promoter of each of the three genes controls the next cistron via the negative feedback, suppressing the expression of the neighboring gene. In this paper, the nonlinear dynamics of a modified repressilator, which has time delays in all parts of the regulatory network, has been studied for the first time. Delay can be both natural, i.e. arises during the transcription/translation of genes due to the multistage nature of these processes, and artificial, i.e. specially to be introduced into the work of the regulatory network using synthetic biology technologies. It is assumed that the regulation is carried out by proteins being in a dimeric form. The considered repressilator has two more important modifications: the location on the same plasmid of the gene $gfp$, which codes for the fluorescent protein, and also the presence in the system of a DNA sponge. In the paper, the nonlinear dynamics has been considered within the framework of the deterministic description. By applying the method of decomposition into fast and slow motions, the set of nonlinear differential equations with delay on a slow manifold has been obtained. It is shown that there exists a single equilibrium state which loses its stability in an oscillatory manner at certain values of the control parameters. For a symmetric repressilator, in which all three genes are identical, an analytical solution for the neutral Andronov–Hopf bifurcation curve has been obtained. For the general case of an asymmetric repressilator, neutral curves are found numerically. It is shown that the asymmetric repressor generally is more stable, since the system is oriented to the behavior of the most stable element in the network. Nonlinear dynamic regimes arising in a repressilator with increase of the parameters are studied in detail. It was found that there exists a limit cycle corresponding to relaxation oscillations of protein concentrations. In addition to the limit cycle, we found the slow manifold not associated with above cycle. This is the long-lived transitional regime, which reflects the process of long-term synchronization of pulsations in the work of individual genes. The obtained results are compared with the experimental data known from the literature. The place of the model proposed in the present work among other theoretical models of the repressilator is discussed.
-
Hybrid models in biomedical applications
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309Views (last year): 25.The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.
-
System modeling, risks evaluation and optimization of a distributed computer system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.
The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.
Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




