All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Development of simulation optimization model for support of planning processes of warehouse systems
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 295-307Views (last year): 2. Citations: 3 (RSCI).In the article, the questions of application of a optimization method for support of planning processes in warehouse systems by means of simulation are considered. Mechanisms of interrelation of optimization and simulation models are investigated, and also the algorithm of simulation optimization model development of warehouse system for support of planning processes is described in detail.
-
Computer simulation of temperature field of blast furnace’s air tuyere
Computer Research and Modeling, 2017, v. 9, no. 1, pp. 117-125Views (last year): 7.Study of work of heating equipment is an actual issue because it allows determining optimal regimes to reach highest efficiency. At that it is very helpful to use computer simulation to predict how different heating modes influence the effectiveness of the heating process and wear of heating equipment. Computer simulation provides results whose accuracy is proven by many studies and requires costs and time less than real experiments. In terms of present research, computer simulation of heating of air tuyere of blast furnace was realized with the help of FEM software. Background studies revealed possibility to simulate it as a flat, axisymmetric problem and DEFORM-2D software was used for simulation. Geometry, necessary for simulation, was designed with the help of SolidWorks, saved in .dxf format. Then it was exported to DEFORM-2D pre-processor and positioned. Preliminary and boundary conditions were set up. Several modes of operating regimes were under analysis. In order to demonstrate influence of eah of the modes and for better visualization point tracking option of the DEFORM-2D post-processor was applied. Influence of thermal insulation box plugged into blow channel, with and without air gap, and thermal coating on air tuyere’s temperature field was investigated. Simulation data demonstrated significant effect of thermal insulation box on air tuyere’s temperature field. Designed model allowed to simulate tuyere’s burnout as a result of interaction with liquid iron. Conducted researches have demonstrated DEFORM-2D effectiveness while using it for simulation of heat transfer and heating processes. DEFORM-2D is about to be used in further studies dedicated to more complex process connected with temperature field of blast furnace’s air tuyere.
-
Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1111-1119The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.
-
The development of an intelligent system for recognizing the volume and weight characteristics of cargo
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 437-450Industrial imaging or “machine vision” is currently a key technology in many industries as it can be used to optimize various processes. The purpose of this work is to create a software and hardware complex for measuring the overall and weight characteristics of cargo based on an intelligent system using neural network identification methods that allow one to overcome the technological limitations of similar complexes implemented on ultrasonic and infrared measuring sensors. The complex to be developed will measure cargo without restrictions on the volume and weight characteristics of cargo to be tariffed and sorted within the framework of the warehouse complexes. The system will include an intelligent computer program that determines the volume and weight characteristics of cargo using the machine vision technology and an experimental sample of the stand for measuring the volume and weight of cargo.
We analyzed the solutions to similar problems. We noted that the disadvantages of the studied methods are very high requirements for the location of the camera, as well as the need for manual operations when calculating the dimensions, which cannot be automated without significant modifications. In the course of the work, we investigated various methods of object recognition in images to carry out subject filtering by the presence of cargo and measure its overall dimensions. We obtained satisfactory results when using cameras that combine both an optical method of image capture and infrared sensors. As a result of the work, we developed a computer program allowing one to capture a continuous stream from Intel RealSense video cameras with subsequent extraction of a three-dimensional object from the designated area and to calculate the overall dimensions of the object. At this stage, we analyzed computer vision techniques; developed an algorithm to implement the task of automatic measurement of goods using special cameras and the software allowing one to obtain the overall dimensions of objects in automatic mode.
Upon completion of the work, this development can be used as a ready-made solution for transport companies, logistics centers, warehouses of large industrial and commercial enterprises.
-
Utilizing multi-source real data for traffic flow optimization in CTraf
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.
-
Mathematical features of individual dosimetric planning of radioiodotherapy based on pharmacokinetic modeling
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 773-784When determining therapeutic absorbed doses in the process of radioiodine therapy, the method of individual dosimetric planning is increasingly used in Russian medicine. However, for the successful implementation of this method, it is necessary to have appropriate software that allows modeling the pharmacokinetics of radioiodine in the patient’s body and calculate the necessary therapeutic activity of a radiopharmaceutical drug to achieve the planned therapeutic absorbed dose in the thyroid gland.
Purpose of the work: development of a software package for pharmacokinetic modeling and calculation of individual absorbed doses in radioiodine therapy based on a five-chamber model of radioiodine kinetics using two mathematical optimization methods. The work is based on the principles and methods of RFLP pharmacokinetics (chamber modeling). To find the minimum of the residual functional in identifying the values of the transport constants of the model, the Hook – Jeeves method and the simulated annealing method were used. Calculation of dosimetric characteristics and administered therapeutic activity is based on the method of calculating absorbed doses using the functions of radioiodine activity in the chambers found during modeling. To identify the parameters of the model, the results of radiometry of the thyroid gland and urine of patients with radioiodine introduced into the body were used.
A software package for modeling the kinetics of radioiodine during its oral intake has been developed. For patients with diffuse toxic goiter, the transport constants of the model were identified and individual pharmacokinetic and dosimetric characteristics (elimination half-lives, maximum thyroid activity and time to reach it, absorbed doses to critical organs and tissues, administered therapeutic activity) were calculated. The activity-time relationships for all cameras in the model are obtained and analyzed. A comparative analysis of the calculated pharmacokinetic and dosimetric characteristics calculated using two mathematical optimization methods was performed. Evaluation completed the stunning-effect and its contribution to the errors in calculating absorbed doses. From a comparative analysis of the pharmacokinetic and dosimetric characteristics calculated in the framework of two optimization methods, it follows that the use of a more complex mathematical method for simulating annealing in a software package does not lead to significant changes in the values of the characteristics compared to the simple Hook – Jeeves method. Errors in calculating absorbed doses in the framework of these mathematical optimization methods do not exceed the spread of absorbed dose values from the stunning-effect.
-
Performance of the OpenMP and MPI implementations on ultrasparc system
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 485-491Views (last year): 2.This paper targets programmers and developers interested in utilizing parallel programming techniques to enhance application performance. The Oracle Solaris Studio software provides state-of-the-art optimizing and parallelizing compilers for C, C++ and Fortran, an advanced debugger, and optimized mathematical and performance libraries. Also included are an extremely powerful performance analysis tool for profiling serial and parallel applications, a thread analysis tool to detect data races and deadlock in memory parallel programs, and an Integrated Development Environment (IDE). The Oracle Message Passing Toolkit software provides the high-performance MPI libraries and associated run-time environment needed for message passing applications that can run on a single system or across multiple compute systems connected with high performance networking, including Gigabit Ethernet, 10 Gigabit Ethernet, InfiniBand and Myrinet. Examples of OpenMP and MPI are provided throughout the paper, including their usage via the Oracle Solaris Studio and Oracle Message Passing Toolkit products for development and deployment of both serial and parallel applications on SPARC and x86/x64 based systems. Throughout this paper it is demonstrated how to develop and deploy an application parallelized with OpenMP and/or MPI.
-
Software complex for numerical modeling of multibody system dynamics
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.
The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.
The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.
-
Generating database schema from requirement specification based on natural language processing and large language model
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1703-1713A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.
-
Parameter identification of viscoelastic cell models based on force curves and wavelet transform
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




