All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Methods and problems in the kinetic approach for simulating biological structures
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 851-866Views (last year): 31.The biological structure is considered as an open nonequilibrium system which properties can be described on the basis of kinetic equations. New problems with nonequilibrium boundary conditions are introduced. The nonequilibrium distribution tends gradually to an equilibrium state. The region of spatial inhomogeneity has a scale depending on the rate of mass transfer in the open system and the characteristic time of metabolism. In the proposed approximation, the internal energy of the motion of molecules is much less than the energy of translational motion. Or in other terms we can state that the kinetic energy of the average blood velocity is substantially higher than the energy of chaotic motion of the same particles. We state that the relaxation problem models a living system. The flow of entropy to the system decreases in downstream, this corresponds to Shrödinger’s general ideas that the living system “feeds on” negentropy. We introduce a quantity that determines the complexity of the biosystem, more precisely, this is the difference between the nonequilibrium kinetic entropy and the equilibrium entropy at each spatial point integrated over the entire spatial region. Solutions to the problems of spatial relaxation allow us to estimate the size of biosystems as regions of nonequilibrium. The results are compared with empirical data, in particular, for mammals we conclude that the larger the size of animals, the smaller the specific energy of metabolism. This feature is reproduced in our model since the span of the nonequilibrium region is larger in the system where the reaction rate is shorter, or in terms of the kinetic approach, the longer the relaxation time of the interaction between the molecules. The approach is also used for estimation of a part of a living system, namely a green leaf. The problems of aging as degradation of an open nonequilibrium system are considered. The analogy is related to the structure, namely, for a closed system, the equilibrium of the structure is attained for the same molecules while in the open system, a transition occurs to the equilibrium of different particles, which change due to metabolism. Two essentially different time scales are distinguished, the ratio of which is approximately constant for various animal species. Under the assumption of the existence of these two time scales the kinetic equation splits in two equations, describing the metabolic (stationary) and “degradative” (nonstationary) parts of the process.
-
Numerical study of intense shock waves in dusty media with a homogeneous and two-component carrier phase
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 141-154The article is devoted to the numerical study of shock-wave flows in inhomogeneous media–gas mixtures. In this work, a two-speed two-temperature model is used, in which the dispersed component of the mixture has its own speed and temperature. To describe the change in the concentration of the dispersed component, the equation of conservation of “average density” is solved. This study took into account interphase thermal interaction and interphase pulse exchange. The mathematical model allows the carrier component of the mixture to be described as a viscous, compressible and heat-conducting medium. The system of equations was solved using the explicit Mac-Cormack second-order finite-difference method. To obtain a monotone numerical solution, a nonlinear correction scheme was applied to the grid function. In the problem of shock-wave flow, the Dirichlet boundary conditions were specified for the velocity components, and the Neumann boundary conditions were specified for the other unknown functions. In numerical calculations, in order to reveal the dependence of the dynamics of the entire mixture on the properties of the solid component, various parameters of the dispersed phase were considered — the volume content as well as the linear size of the dispersed inclusions. The goal of the research was to determine how the properties of solid inclusions affect the parameters of the dynamics of the carrier medium — gas. The motion of an inhomogeneous medium in a shock duct divided into two parts was studied, the gas pressure in one of the channel compartments is more important than in the other. The article simulated the movement of a direct shock wave from a high-pressure chamber to a low–pressure chamber filled with a dusty medium and the subsequent reflection of a shock wave from a solid surface. An analysis of numerical calculations showed that a decrease in the linear particle size of the gas suspension and an increase in the physical density of the material from which the particles are composed leads to the formation of a more intense reflected shock wave with a higher temperature and gas density, as well as a lower speed of movement of the reflected disturbance reflected wave.
-
Computer simulation of the process soil treatment by tillage tools of soil processing machines
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.
-
Tracking on the BESIII CGEM inner detector using deep learning
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.
The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.
In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.
The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.
-
Modeling of sedimentation and filtration layer formation by discrete element method
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 105-120Views (last year): 1. Citations: 2 (RSCI).The numerical model of sedimentation and suspension filtration is proposed in this paper. The model is based on dynamic variant of discrete element method. This model represents the particles behavior on microand meso-scales: pores, arches, flocks formation. In addition, the proposed model qualitatively reproduces macro phenomenon: sedimentation of particle layer, slow shrinkage of the layer, sealing of the layer under its own weight of the particles and the external applied force.
-
The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722Views (last year): 2.In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.
In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.
Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.
-
Calibration of an elastostatic manipulator model using AI-based design of experiment
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1535-1553This paper demonstrates the advantages of using artificial intelligence algorithms for the design of experiment theory, which makes possible to improve the accuracy of parameter identification for an elastostatic robot model. Design of experiment for a robot consists of the optimal configuration-external force pairs for the identification algorithms and can be described by several main stages. At the first stage, an elastostatic model of the robot is created, taking into account all possible mechanical compliances. The second stage selects the objective function, which can be represented by both classical optimality criteria and criteria defined by the desired application of the robot. At the third stage the optimal measurement configurations are found using numerical optimization. The fourth stage measures the position of the robot body in the obtained configurations under the influence of an external force. At the last, fifth stage, the elastostatic parameters of the manipulator are identified based on the measured data.
The objective function required to finding the optimal configurations for industrial robot calibration is constrained by mechanical limits both on the part of the possible angles of rotation of the robot’s joints and on the part of the possible applied forces. The solution of this multidimensional and constrained problem is not simple, therefore it is proposed to use approaches based on artificial intelligence. To find the minimum of the objective function, the following methods, also sometimes called heuristics, were used: genetic algorithms, particle swarm optimization, simulated annealing algorithm, etc. The obtained results were analyzed in terms of the time required to obtain the configurations, the optimal value, as well as the final accuracy after applying the calibration. The comparison showed the advantages of the considered optimization techniques based on artificial intelligence over the classical methods of finding the optimal value. The results of this work allow us to reduce the time spent on calibration and increase the positioning accuracy of the robot’s end-effector after calibration for contact operations with high loads, such as machining and incremental forming.
-
Investigation of water injection influence on hydrocyclone separation performance
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 803-810In this paper particularities of the swirling turbulent flow of monodisperse suspension in the hydrocyclone with injector are investigated on the base of the numerical simulation. The 2D axisymmetric approximation of Reynolds Stresses Model and model of mixture is used to describe the swirling turbulent flow field of suspension and particles parameters in the hydrocyclone. Special attention is paid to the clarification of mechanisms of injection influence on the reorganization of hydrodynamic field and finally on classification mechanisms. It is shown that tangential injection method stronger effects separation curve compared to the radial one.
-
Modeling of rheological characteristics of aqueous suspensions based on nanoscale silicon dioxide particles
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1217-1252The rheological behavior of aqueous suspensions based on nanoscale silicon dioxide particles strongly depends on the dynamic viscosity, which affects directly the use of nanofluids. The purpose of this work is to develop and validate models for predicting dynamic viscosity from independent input parameters: silicon dioxide concentration SiO2, pH acidity, and shear rate $\gamma$. The influence of the suspension composition on its dynamic viscosity is analyzed. Groups of suspensions with statistically homogeneous composition have been identified, within which the interchangeability of compositions is possible. It is shown that at low shear rates, the rheological properties of suspensions differ significantly from those obtained at higher speeds. Significant positive correlations of the dynamic viscosity of the suspension with SiO2 concentration and pH acidity were established, and negative correlations with the shear rate $\gamma$. Regression models with regularization of the dependence of the dynamic viscosity $\eta$ on the concentrations of SiO2, NaOH, H3PO4, surfactant (surfactant), EDA (ethylenediamine), shear rate γ were constructed. For more accurate prediction of dynamic viscosity, the models using algorithms of neural network technologies and machine learning (MLP multilayer perceptron, RBF radial basis function network, SVM support vector method, RF random forest method) were trained. The effectiveness of the constructed models was evaluated using various statistical metrics, including the average absolute approximation error (MAE), the average quadratic error (MSE), the coefficient of determination $R^2$, and the average percentage of absolute relative deviation (AARD%). The RF model proved to be the best model in the training and test samples. The contribution of each component to the constructed model is determined. It is shown that the concentration of SiO2 has the greatest influence on the dynamic viscosity, followed by pH acidity and shear rate γ. The accuracy of the proposed models is compared to the accuracy of models previously published. The results confirm that the developed models can be considered as a practical tool for studying the behavior of nanofluids, which use aqueous suspensions based on nanoscale particles of silicon dioxide.
-
Computer modeling of the gross regional product dynamics: a comparative analysis of neural network models
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1219-1236Analysis of regional economic indicators plays a crucial role in management and development planning, with Gross Regional Product (GRP) serving as one of the key indicators of economic activity. The application of artificial intelligence, including neural network technologies, enables significant improvements in the accuracy and reliability of forecasts of economic processes. This study compares three neural network algorithm models for predicting the GRP of a typical region of the Russian Federation — the Udmurt Republic — based on time series data from 2000 to 2023. The selected models include a neural network with the Bat Algorithm (BA-LSTM), a neural network model based on backpropagation error optimized with a Genetic Algorithm (GA-BPNN), and a neural network model of Elman optimized using the Particle Swarm Optimization algorithm (PSO-Elman). The research involved stages of neural network modeling such as data preprocessing, training model, and comparative analysis based on accuracy and forecast quality metrics. This approach allows for evaluating the advantages and limitations of each model in the context of GRP forecasting, as well as identifying the most promising directions for further research. The utilization of modern neural network methods opens new opportunities for automating regional economic analysis and improving the quality of forecast assessments, which is especially relevant when data are limited and for rapid decision-making. The study uses factors such as the amount of production capital, the average annual number of labor resources, the share of high-tech and knowledge-intensive industries in GRP, and an inflation indicator as input data for predicting GRP. The high accuracy of the predictions achieved by including these factors in the neural network models confirms the strong correlation between these factors and GRP. The results demonstrate the exceptional accuracy of the BA-LSTM neural network model on validation data: the coefficient of determination was 0.82, and the mean absolute percentage error was 4.19%. The high performance and reliability of this model confirm its capacity to predict effectively the dynamics of the GRP. During the forecast period up to 2030, the Udmurt Republic is expected to experience an annual increase in Gross Regional Product (GRP) of +4.6% in current prices or +2.5% in comparable 2023 prices. By 2030, the GRP is projected to reach 1264.5 billion rubles.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




