All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Two-dimensional modeling of influence on detached supersonic gas flow caused by its turning by means of rapid local heating
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1283-1300The influence of the process of initiating a rapid local heat release near surface streamlined by supersonic gas (air) flow on the separation region that occurs during a fast turn of the flow was investigated. This surface consists of two planes that form obtuse angle when crossing, so that when flowing around the formed surface, the supersonic gas flow turns by a positive angle, which forms an oblique shock wave that interacts with the boundary layer and causes flow separation. Rapid local heating of the gas above the streamlined surface simulates long spark discharge of submicrosecond duration that crosses the flow. The gas heated in the discharge zone interacts with the separation region. The flow can be considered two-dimensional, so the numerical simulation is carried out in a two-dimensional formulation. Numerical simulation was carried out for laminar regime of flow using the sonicFoam solver of the OpenFOAM software package.
The paper describes a method for constructing a two-dimensional computational grid using hexagonal cells. A study of grid convergence has been carried out. A technique is given for setting the initial profiles of the flow parameters at the entrance to the computational domain, which makes it possible to reduce the computation time by reducing the number of computational cells. A method for non-stationary simulation of the process of rapid local heating of a gas is described, which consists in superimposing additional fields of increased pressure and temperature values calculated from the amount of energy deposited in oncoming supersonic gas flow on the corresponding fields of values obtained in the stationary case. The parameters of the energy input into the flow corresponding to the parameters of the electric discharge process, as well as the parameters of the oncoming flow, are close to the experimental values.
During analyzing numerical simulation data it was found that the initiation of rapid local heating leads to the appearance of a gas-dynamic perturbation (a quasi-cylindrical shock wave and an unsteady swirling flow), which, when interacting with the separation region, leads to a displacement of the separation point downstream. The paper considers the question of the influence of the energy spent on local heating of the gas, and of the position on the streamlined surface of the place of heating relative to the separation point, on the value of its maximum displacement.
-
Nonlinear modeling of oscillatory viscoelastic fluid with variable viscosity: a comparative analysis of dual solutions
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 409-431The viscoelastic fluid flow model across a porous medium has captivated the interest of many contemporary researchers due to its industrial and technical uses, such as food processing, paper and textile coating, packed bed reactors, the cooling effect of transpiration and the dispersion of pollutants through aquifers. This article focuses on the influence of variable viscosity and viscoelasticity on the magnetohydrodynamic oscillatory flow of second-order fluid through thermally radiating wavy walls. A mathematical model for this fluid flow, including governing equations and boundary conditions, is developed using the usual Boussinesq approximation. The governing equations are transformed into a system of nonlinear ordinary differential equations using non-similarity transformations. The numerical results obtained by applying finite-difference code based on the Lobatto IIIa formula generated by bvp4c solver are compared to the semi-analytical solutions for the velocity, temperature and concentration profiles obtained using the homotopy perturbation method (HPM). The effect of flow parameters on velocity, temperature, concentration profiles, skin friction coefficient, heat and mass transfer rate, and skin friction coefficient is examined and illustrated graphically. The physical parameters governing the fluid flow profoundly affected the resultant flow profiles except in a few cases. By using the slope linear regression method, the importance of considering the viscosity variation parameter and its interaction with the Lorentz force in determining the velocity behavior of the viscoelastic fluid model is highlighted. The percentage increase in the velocity profile of the viscoelastic model has been calculated for different ranges of viscosity variation parameters. Finally, the results are validated numerically for the skin friction coefficient and Nusselt number profiles.
-
Stochastic transitions from order to chaos in a metapopulation model with migration
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 959-973This paper focuses on the problem of modeling and analyzing dynamic regimes, both regular and chaotic, in systems of coupled populations in the presence of random disturbances. The discrete Ricker model is used as the initial deterministic population model. The paper examines the dynamics of two populations coupled by migration. Migration is proportional to the difference between the densities of two populations with a coupling coefficient responsible for the strength of the migration flow. Isolated population subsystems, modeled by the Ricker map, exhibit various dynamic modes, including equilibrium, periodic, and chaotic ones. In this study, the coupling coefficient is treated as a bifurcation parameter and the parameters of natural population growth rate remain fixed. Under these conditions, one subsystem is in the equilibrium mode, while the other exhibits chaotic behavior. The coupling of two populations through migration creates new dynamic regimes, which were not observed in the isolated model. This article aims to analyze the dynamics of corporate systems with variations in the flow intensity between population subsystems. The article presents a bifurcation analysis of the attractors in a deterministic model of two coupled populations, identifies zones of monostability and bistability, and gives examples of regular and chaotic attractors. The main focus of the work is in comparing the stability of dynamic regimes against random disturbances in the migration intensity. Noise-induced transitions from a periodic attractor to a chaotic attractor are identified and described using direct numerical simulation methods. The Lyapunov exponents are used to analyze stochastic phenomena. It has been shown that in this model, there is a region of change in the bifurcation parameter in which, even with an increase in the intensity of random perturbations, there is no transition from order to chaos. For the analytical study of noise-induced transitions, the stochastic sensitivity function technique and the confidence domain method are used. The paper demonstrates how this mathematical tool can be employed to predict the critical noise intensity that causes a periodic regime to transform into a chaotic one.
-
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Views (last year): 3. Citations: 1 (RSCI).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
Physical analysis and mathematical modeling of the parameters of explosion region produced in a rarefied ionosphere
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 817-833The paper presents a physical and numerical analysis of the dynamics and radiation of explosion products formed during the Russian-American experiment in the ionosphere using an explosive generator based on hexogen (RDX) and trinitrotoluene (TNT). The main attention is paid to the radiation of the perturbed region and the dynamics of the products of explosion (PE). The detailed chemical composition of the explosion products is analyzed and the initial concentrations of the most important molecules capable of emitting in the infrared range of the spectrum are determined, and their radiative constants are given. The initial temperature of the explosion products and the adiabatic exponent are determined. The nature of the interpenetration of atoms and molecules of a highly rarefied ionosphere into a spherically expanding cloud of products is analyzed. An approximate mathematical model of the dynamics of explosion products under conditions of mixing rarefied ionospheric air with them has been developed and the main thermodynamic characteristics of the system have been calculated. It is shown that for a time of 0,3–3 sec there is a significant increase in the temperature of the scattering mixture as a result of its deceleration. In the problem under consideration the explosion products and the background gas are separated by a contact boundary. To solve this two-region gas dynamic problem a numerical algorithm based on the Lagrangian approach was developed. It was necessary to fulfill special conditions at the contact boundary during its movement in a stationary gas. In this case there are certain difficulties in describing the parameters of the explosion products near the contact boundary which is associated with a large difference in the size of the mass cells of the explosion products and the background due to a density difference of 13 orders of magnitude. To reduce the calculation time of this problem an irregular calculation grid was used in the area of explosion products. Calculations were performed with different adiabatic exponents. The most important result is temperature. It is in good agreement with the results obtained by the method that approximately takes into account interpenetration. The time behavior of the IR emission coefficients of active molecules in a wide range of the spectrum is obtained. This behavior is qualitatively consistent with experiments for the IR glow of flying explosion products.
-
Dynamic regimes of the stochastic “prey – predatory” model with competition and saturation
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 515-531Views (last year): 28.We consider “predator – prey” model taking into account the competition of prey, predator for different from the prey resources, and their interaction described by the second type Holling trophic function. An analysis of the attractors is carried out depending on the coefficient of competition of predators. In the deterministic case, this model demonstrates the complex behavior associated with the local (Andronov –Hopf and saddlenode) and global (birth of a cycle from a separatrix loop) bifurcations. An important feature of this model is the disappearance of a stable cycle due to a saddle-node bifurcation. As a result of the presence of competition in both populations, parametric zones of mono- and bistability are observed. In parametric zones of bistability the system has either coexisting two equilibria or a cycle and equilibrium. Here, we investigate the geometrical arrangement of attractors and separatrices, which is the boundary of basins of attraction. Such a study is an important component in understanding of stochastic phenomena. In this model, the combination of the nonlinearity and random perturbations leads to the appearance of new phenomena with no analogues in the deterministic case, such as noise-induced transitions through the separatrix, stochastic excitability, and generation of mixed-mode oscillations. For the parametric study of these phenomena, we use the stochastic sensitivity function technique and the confidence domain method. In the bistability zones, we study the deformations of the equilibrium or oscillation regimes under stochastic perturbation. The geometric criterion for the occurrence of such qualitative changes is the intersection of confidence domains and the separatrix of the deterministic model. In the zone of monostability, we evolve the phenomena of explosive change in the size of population as well as extinction of one or both populations with minor changes in external conditions. With the help of the confidence domains method, we solve the problem of estimating the proximity of a stochastic population to dangerous boundaries, upon reaching which the coexistence of populations is destroyed and their extinction is observed.
-
Mathematical methods for stabilizing the structure of social systems under external disturbances
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 845-857The article considers a bilinear model of the influence of external disturbances on the stability of the structure of social systems. Approaches to the third-party stabilization of the initial system consisting of two groups are investigated — by reducing the initial system to a linear system with uncertain parameters and using the results of the theory of linear dynamic games with a quadratic criterion. The influence of the coefficients of the proposed model of the social system and the control parameters on the quality of the system stabilization is analyzed with the help of computer experiments. It is shown that the use of a minimax strategy by a third party in the form of feedback control leads to a relatively close convergence of the population of the second group (excited by external influences) to an acceptable level, even with unfavorable periodic dynamic perturbations.
The influence of one of the key coefficients in the criterion $(\varepsilon)$ used to compensate for the effects of external disturbances (the latter are present in the linear model in the form of uncertainty) on the quality of system stabilization is investigated. Using Z-transform, it is shown that a decrease in the coefficient $\varepsilon$ should lead to an increase in the values of the sum of the squares of the control. The computer calculations carried out in the article also show that the improvement of the convergence of the system structure to the equilibrium level with a decrease in this coefficient is achieved due to sharp changes in control in the initial period, which may induce the transition of some members of the quiet group to the second, excited group.
The article also examines the influence of the values of the model coefficients that characterize the level of social tension on the quality of management. Calculations show that an increase in the level of social tension (all other things being equal) leads to the need for a significant increase in the third party's stabilizing efforts, as well as the value of control at the transition period.
The results of the statistical modeling carried out in the article show that the calculated feedback controls successfully compensate for random disturbances on the social system (both in the form of «white» noise, and of autocorrelated disturbances).
-
Pattern formation of a three-species predator – prey model with prey-taxis and omnivorous predator
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1617-1634The spatiotemporal dynamics of a three-component model for food web is considered. The model describes the interactions among resource, prey and predator that consumes both species. In a previous work, the author analyzed the model without taking into account spatial heterogeneity. This study continues the model study of the community considering the diffusion of individuals, as well as directed movements of the predator. It is assumed that the predator responds to the spatial change in the resource and prey density by occupying areas where species density is higher or avoiding them. Directed predator movement is described by the advection term, where velocity is proportional to the gradient of resource and prey density. The system is considered on a one-dimensional domain with zero-flux conditions as boundary ones. The spatiotemporal dynamics produced by model is determined by the system stability in the vicinity of stationary homogeneous state with respect to small inhomogeneous perturbations. The paper analyzes the possibility of wave instability leading to the emergence of autowaves and Turing instability, as a result of which stationary patterns are formed. Sufficient conditions for the existence of both types of instability are obtained. The influence of local kinetic parameters on the spatial structure formation was analyzed. It was shown that only Turing instability is possible when taxis on the resource is positive, but with a negative taxis, both types of instability are possible. The numerical solution of the system was found by using method of lines (MOL) with the numerical integration of ODE system by means of splitting techniques. The spatiotemporal dynamics of the system is presented in several variants, realizing one of the instability types. In the case of a positive taxis on the prey, both autowave and stationary structures are formed in smaller regions, with an increase in the region size, Turing structures are not formed. For negative taxis on the prey, stationary patterns is observed in both regions, while periodic structures appear only in larger areas.
-
Interval analysis of vegetation cover dynamics
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1191-1205In the development of the previously obtained result on modeling the dynamics of vegetation cover, due to variations in the temperature background, a new scheme for the interval analysis of the dynamics of floristic images of formations is presented in the case when the parameter of the response rate of the model of the dynamics of each counting plant species is set by the interval of scatter of its possible values. The detailed description of the functional parameters of macromodels of biodiversity, desired in fundamental research, taking into account the essential reasons for the observed evolutionary processes, may turn out to be a problematic task. The use of more reliable interval estimates of the variability of functional parameters “bypasses” the problem of uncertainty in the primary assessment of the evolution of the phyto-resource potential of the developed controlled territories. The solutions obtained preserve not only a qualitative picture of the dynamics of species diversity, but also give a rigorous, within the framework of the initial assumptions, a quantitative assessment of the degree of presence of each plant species. The practical significance of two-sided estimation schemes based on the construction of equations for the upper and lower boundaries of the trajectories of the scatter of solutions depends on the conditions and measure of proportional correspondence of the intervals of scatter of the initial parameters with the intervals of scatter of solutions. For dynamic systems, the desired proportionality is not always ensured. The given examples demonstrate the acceptable accuracy of interval estimation of evolutionary processes. It is important to note that the constructions of the estimating equations generate vanishing intervals of scatter of solutions for quasi-constant temperature perturbations of the system. In other words, the trajectories of stationary temperature states of the vegetation cover are not roughened by the proposed interval estimation scheme. The rigor of the result of interval estimation of the species composition of the vegetation cover of formations can become a determining factor when choosing a method in the problems of analyzing the dynamics of species diversity and the plant potential of territorial systems of resource-ecological monitoring. The possibilities of the proposed approach are illustrated by geoinformation images of the computational analysis of the dynamics of the vegetation cover of the Yamal Peninsula and by the graphs of the retro-perspective analysis of the floristic variability of the formations of the landscapelithological group “Upper” based on the data of the summer temperature background of the Salehard weather station from 2010 to 1935. The developed indicators of floristic variability and the given graphs characterize the dynamics of species diversity, both on average and individually in the form of intervals of possible states for each species of plant.
-
Connection between discrete financial models and continuous models with Wiener and Poisson processes
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 781-795The paper is devoted to the study of relationships between discrete and continuous models financial processes and their probabilistic characteristics. First, a connection is established between the price processes of stocks, hedging portfolio and options in the models conditioned by binomial perturbations and their limit perturbations of the Brownian motion type. Secondly, analogues in the coefficients of stochastic equations with various random processes, continuous and jumpwise, and in the coefficients corresponding deterministic equations for their probabilistic characteristics. Statement of the results on the connections and finding analogies, obtained in this paper, led to the need for an adequate presentation of preliminary information and results from financial mathematics, as well as descriptions of related objects of stochastic analysis. In this paper, partially new and known results are presented in an accessible form for those who are not specialists in financial mathematics and stochastic analysis, and for whom these results are important from the point of view of applications. Specifically, the following sections are presented.
• In one- and n-period binomial models, it is proposed a unified approach to determining on the probability space a risk-neutral measure with which the discounted option price becomes a martingale. The resulting martingale formula for the option price is suitable for numerical simulation. In the following sections, the risk-neutral measures approach is applied to study financial processes in continuous-time models.
• In continuous time, models of the price of shares, hedging portfolios and options are considered in the form of stochastic equations with the Ito integral over Brownian motion and over a compensated Poisson process. The study of the properties of these processes in this section is based on one of the central objects of stochastic analysis — the Ito formula. Special attention is given to the methods of its application.
• The famous Black – Scholes formula is presented, which gives a solution to the partial differential equation for the function $v(t, x)$, which, when $x = S (t)$ is substituted, where $S(t)$ is the stock price at the moment time $t$, gives the price of the option in the model with continuous perturbation by Brownian motion.
• The analogue of the Black – Scholes formula for the case of the model with a jump-like perturbation by the Poisson process is suggested. The derivation of this formula is based on the technique of risk-neutral measures and the independence lemma.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




