All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Study of the dynamics of the structure of oligopolistic markets with non-market opposition parties
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 219-233The article examines the impact of non-market actions of participants in oligopolistic markets on the market structure. The following actions of one of the market participants aimed at increasing its market share are analyzed: 1) price manipulation; 2) blocking investments of stronger oligopolists; 3) destruction of produced products and capacities of competitors. Linear dynamic games with a quadratic criterion are used to model the strategies of oligopolists. The expediency of their use is due to the possibility of both an adequate description of the evolution of markets and the implementation of two mutually complementary approaches to determining the strategies of oligopolists: 1) based on the representation of models in the state space and the solution of generalized Riccati equations; 2) based on the application of operational calculus methods (in the frequency domain) which owns the visibility necessary for economic analysis.
The article shows the equivalence of approaches to solving the problem with maximin criteria of oligopolists in the state space and in the frequency domain. The results of calculations are considered in relation to a duopoly, with indicators close to one of the duopolies in the microelectronic industry of the world. The second duopolist is less effective from the standpoint of costs, though more mobile. Its goal is to increase its market share by implementing the non-market methods listed above.
Calculations carried out with help of the game model, made it possible to construct dependencies that characterize the relationship between the relative increase in production volumes over a 25-year period of weak and strong duopolists under price manipulation. Constructed dependencies show that an increase in the price for the accepted linear demand function leads to a very small increase in the production of a strong duopolist, but, simultaneously, to a significant increase in this indicator for a weak one.
Calculations carried out with use of the other variants of the model, show that blocking investments, as well as destroying the products of a strong duopolist, leads to more significant increase in the production of marketable products for a weak duopolist than to a decrease in this indicator for a strong one.
-
Reduced mathematical model of blood coagulation taking into account thrombin activity switching as a basis for estimation of hemodynamic effects and its implementation in FlowVision package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1039-1067The possibility of numerical 3D simulation of thrombi formation is considered.
The developed up to now detailed mathematical models describing formation of thrombi and clots include a great number of equations. Being implemented in a CFD code, the detailed mathematical models require essential computer resources for simulation of the thrombi growth in a blood flow. A reasonable alternative way is using reduced mathematical models. Two models based on the reduced mathematical model for the thrombin generation are described in the given paper.
The first model describes growth of a thrombus in a great vessel (artery). The artery flows are essentially unsteady. They are characterized by pulse waves. The blood velocity here is high compared to that in the vein tree. The reduced model for the thrombin generation and the thrombus growth in an artery is relatively simple. The processes accompanying the thrombin generation in arteries are well described by the zero-order approximation.
A vein flow is characterized lower velocity value, lower gradients, and lower shear stresses. In order to simulate the thrombin generation in veins, a more complex system of equations has to be solved. The model must allow for all the non-linear terms in the right-hand sides of the equations.
The simulation is carried out in the industrial software FlowVision.
The performed numerical investigations have shown the suitability of the reduced models for simulation of thrombin generation and thrombus growth. The calculations demonstrate formation of the recirculation zone behind a thrombus. The concentration of thrombin and the mass fraction of activated platelets are maximum here. Formation of such a zone causes slow growth of the thrombus downstream. At the upwind part of the thrombus, the concentration of activated platelets is low, and the upstream thrombus growth is negligible.
When the blood flow variation during a hart cycle is taken into account, the thrombus growth proceeds substantially slower compared to the results obtained under the assumption of constant (averaged over a hard cycle) conditions. Thrombin and activated platelets produced during diastole are quickly carried away by the blood flow during systole. Account of non-Newtonian rheology of blood noticeably affects the results.
-
Application of the Dynamic Mode Decomposition in search of unstable modes in laminar-turbulent transition problem
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1069-1090Laminar-turbulent transition is the subject of an active research related to improvement of economic efficiency of air vehicles, because in the turbulent boundary layer drag increases, which leads to higher fuel consumption. One of the directions of such research is the search for efficient methods, that can be used to find the position of the transition in space. Using this information about laminar-turbulent transition location when designing an aircraft, engineers can predict its performance and profitability at the initial stages of the project. Traditionally, eN method is applied to find the coordinates of a laminar-turbulent transition. It is a well known approach in industry. However, despite its widespread use, this method has a number of significant drawbacks, since it relies on parallel flow assumption, which limits the scenarios for its application, and also requires computationally expensive calculations in a wide range of frequencies and wave numbers. Alternatively, flow analysis can be done by using Dynamic Mode Decomposition, which allows one to analyze flow disturbances using flow data directly. Since Dynamic Mode Decomposition is a dimensionality reduction method, the number of computations can be dramatically reduced. Furthermore, usage of Dynamic Mode Decomposition expands the applicability of the whole method, due to the absence of assumptions about the parallel flow in its derivation.
The presented study proposes an approach to finding the location of a laminar-turbulent transition using the Dynamic Mode Decomposition method. The essence of this approach is to divide the boundary layer region into sets of subregions, for each of which the transition point is independently calculated, using Dynamic Mode Decomposition for flow analysis, after which the results are averaged to produce the final result. This approach is validated by laminar-turbulent transition predictions of subsonic and supersonic flows over a 2D flat plate with zero pressure gradient. The results demonstrate the fundamental applicability and high accuracy of the described method in a wide range of conditions. The study focuses on comparison with the eN method and proves the advantages of the proposed approach. It is shown that usage of Dynamic Mode Decomposition leads to significantly faster execution due to less intensive computations, while the accuracy is comparable to the such of the solution obtained with the eN method. This indicates the prospects for using the described approach in a real world applications.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"