All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Retail forecasting on high-frequency depersonalized data
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1713-1734Technological development determines the emergence of highly detailed data in time and space, which expands the possibilities of analysis, allowing us to consider consumer decisions and the competitive behavior of enterprises in all their diversity, taking into account the context of the territory and the characteristics of time periods. Despite the promise of such studies, they are currently limited in the scientific literature. This is due to the range of problems, the solution of which is considered in this paper. The article draws attention to the complexity of the analysis of depersonalized high-frequency data and the possibility of modeling consumption changes in time and space based on them. The features of the new type of data are considered on the example of real depersonalized data received from the fiscal data operator “First OFD” (JSC “Energy Systems and Communications”). It is shown that along with the spectrum of problems inherent in high-frequency data, there are disadvantages associated with the process of generating data on the side of the sellers, which requires a wider use of data mining tools. A series of statistical tests were carried out on the data under consideration, including a Unit-Root Test, test for unobserved individual effects, test for serial correlation and for cross-sectional dependence in panels, etc. The presence of spatial autocorrelation of the data was tested using modified tests of Lagrange multipliers. The tests carried out showed the presence of a consistent correlation and spatial dependence of the data, which determine the expediency of applying the methods of panel and spatial analysis in relation to high-frequency data accumulated by fiscal operators. The constructed models made it possible to substantiate the spatial relationship of sales growth and its dependence on the day of the week. The limitation for increasing the predictive ability of the constructed models and their subsequent complication, due to the inclusion of explanatory factors, was the lack of open access statistics grouped in the required detail in time and space, which determines the relevance of the formation of high-frequency geographically structured data bases.
-
Theoretical modeling consensus building in the work of standardization technical committees in coalitions based on regular Markov chains
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1247-1256Often decisions in social groups are made by consensus. This applies, for example, to the examination in the technical committee for standardization (TC) before the approval of the national standard by Rosstandart. The standard is approved if and only if the secured consensus in the TC. The same approach to standards development was adopted in almost all countries and at the regional and international level. Previously published works of authors dedicated to the construction of a mathematical model of time to reach consensus in technical committees for standardization in terms of variation in the number of TC members and their level of authoritarianism. The present study is a continuation of these works for the case of the formation of coalitions that are often formed during the consideration of the draft standard to the TC. In the article the mathematical model is constructed to ensure consensus on the work of technical standardization committees in terms of coalitions. In the framework of the model it is shown that in the presence of coalitions consensus is not achievable. However, the coalition, as a rule, are overcome during the negotiation process, otherwise the number of the adopted standards would be extremely small. This paper analyzes the factors that influence the bridging coalitions: the value of the assignment and an index of the effect of the coalition. On the basis of statistical modelling of regular Markov chains is investigated their effects on the time to ensure consensus in the technical Committee. It is proved that the time to reach consensus significantly depends on the value of unilateral concessions coalition and weakly depends on the size of coalitions. Built regression model of dependence of the average number of approvals from the value of the assignment. It was revealed that even a small concession leads to the onset of consensus, increasing the size of the assignment results (with other factors being equal) to a sharp decline in time before the consensus. It is shown that the assignment of a larger coalition against small coalitions takes on average more time before consensus. The result has practical value for all organizational structures, where the emergence of coalitions entails the inability of decision-making in the framework of consensus and requires the consideration of various methods for reaching a consensus decision.
-
Regularization and acceleration of Gauss – Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1829-1840We propose a family of Gauss –Newton methods for solving optimization problems and systems of nonlinear equations based on the ideas of using the upper estimate of the norm of the residual of the system of nonlinear equations and quadratic regularization. The paper presents a development of the «Three Squares Method» scheme with the addition of a momentum term to the update rule of the sought parameters in the problem to be solved. The resulting scheme has several remarkable properties. First, the paper algorithmically describes a whole parametric family of methods that minimize functionals of a special kind: compositions of the residual of a nonlinear equation and an unimodal functional. Such a functional, entirely consistent with the «gray box» paradigm in the problem description, combines a large number of solvable problems related to applications in machine learning, with the regression problems. Secondly, the obtained family of methods is described as a generalization of several forms of the Levenberg –Marquardt algorithm, allowing implementation in non-Euclidean spaces as well. The algorithm describing the parametric family of Gauss –Newton methods uses an iterative procedure that performs an inexact parametrized proximal mapping and shift using a momentum term. The paper contains a detailed analysis of the efficiency of the proposed family of Gauss – Newton methods; the derived estimates take into account the number of external iterations of the algorithm for solving the main problem, the accuracy and computational complexity of the local model representation and oracle computation. Sublinear and linear convergence conditions based on the Polak – Lojasiewicz inequality are derived for the family of methods. In both observed convergence regimes, the Lipschitz property of the residual of the nonlinear system of equations is locally assumed. In addition to the theoretical analysis of the scheme, the paper studies the issues of its practical implementation. In particular, in the experiments conducted for the suboptimal step, the schemes of effective calculation of the approximation of the best step are given, which makes it possible to improve the convergence of the method in practice in comparison with the original «Three Square Method». The proposed scheme combines several existing and frequently used in practice modifications of the Gauss –Newton method, in addition, the paper proposes a monotone momentum modification of the family of developed methods, which does not slow down the search for a solution in the worst case and demonstrates in practice an improvement in the convergence of the method.
-
Optimal control of bank investment as a factorof economic stability
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967Views (last year): 5.This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"