All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
OpenCL realization of some many-body potentials
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 549-558Views (last year): 4. Citations: 1 (RSCI).Modeling of carbon nanostructures by means of classical molecular dynamics requires a lot of computations. One of the ways to improve the performance of basic algorithms is to transform them for running on SIMD-type computing systems such as systems with dedicated GPU. In this work we describe the development of algorithms for computation of many-body interaction based on Tersoff and embedded-atom potentials by means of OpenCL technology. OpenCL standard provides universality and portability of the algorithms and can be successfully used for development of the software for heterogeneous computing systems. The performance of algorithms is evaluated on CPU and GPU hardware platforms. It is shown that concurrent memory writes is effective for Tersoff bond order potential. The same approach for embedded-atom potential is shown to be slower than algorithm without concurrent memory access. Performance evaluation shows a significant GPU acceleration of energy-force evaluation algorithms for many-body potentials in comparison to the corresponding serial implementations.
-
A CPU benchmarking characterization of ARM based processors
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 581-586Views (last year): 1.Big science projects are producing data at ever increases rates. Typical techniques involve storing the data to disk, after minor filtering, and then processing it in large computer farms. Data production has reached a point where on-line processing is required in order to filter the data down to manageable sizes. A potential solution involves using low-cost, low-power ARM processors in large arrays to provide massive parallelisation for data stream computing (DSC). The main advantage in using System on Chips (SoCs) is inherent in its design philosophy. SoCs are primarily used in mobile devices and hence consume less power while maintaining relatively good performance. A benchmarking characterisation of three different models of ARM processors will be presented.
-
Computational task tracking complex in the scientific project informational support system
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 615-620Views (last year): 2. Citations: 1 (RSCI).This work describes the idea of the system of informational support for the scientific projects and the development of computational task tracking complex. Due to large requirements for computational experiments the problem of presentation of the information about HPC tasks becomes one of the most important. Nonstandard usage of the service desk system as a basis of the computational task tracking and support system can be the solution of this problem. Particular attention is paid to the analysis and the satisfaction of the conflicting requirements to the task tracking complex from the different user groups. Besides the web service kit used for the integration of the task tracking complex and the datacenter environment is considered. This service kit became the main interconnect between the parts of the scientific project support system and also this kit allows to reconfigure the whole system quickly and safely.
-
Query optimization in relational database systems and cloud computing technology
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 649-655Views (last year): 1.Optimization is the heart of relational Database Management System (DMBS). Its can analyzes the SQL statements and determines the most efficient access plan to satisfy every query request. Optimization can solves this problem and analyzes SQL statements specifying which tables and columns are available. And then request the information system and statistical data stored in the system directory, to determine the best method of solving the tasks required to comply with the query requests.
-
Parallel representation of local elimination algorithm for accelerating the solving sparse discrete optimization problems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 699-705Views (last year): 1.The decomposition algorithms provide approaches to deal with NP-hardness in solving discrete optimization problems (DOPs). In this article one of the promising ways to exploit sparse matrices — local elimination algorithm in parallel interpretation (LEAP) are demonstrated. That is a graph-based structural decomposition algorithm, which allows to compute a solution in stages such that each of them uses results from previous stages. At the same time LEAP heavily depends on elimination ordering which actually provides solving stages. Also paper considers tree- and block-parallel for LEAP and required realization process of it comparison of a several heuristics for obtaining a better elimination order and shows how is related graph structure, elimination ordering and solving time.
-
Views (last year): 2.
The report presents an analysis of Big Data storage solutions in different directions. The purpose of this paper is to introduce the technology of Big Data storage, prospects of storage technologies, for example, the software DIRAC. The DIRAC is a software framework for distributed computing.
The report considers popular storage technologies and lists their limitations. The main problems are the storage of large data, the lack of quality in the processing, scalability, the lack of rapid availability, the lack of implementation of intelligent data retrieval.
Experimental computing tasks demand a wide range of requirements in terms of CPU usage, data access or memory consumption and unstable profile of resource use for a certain period. The DIRAC Data Management System (DMS), together with the DIRAC Storage Management System (SMS) provides the necessary functionality to execute and control all the activities related with data.
-
Views (last year): 7.
Nowadays cloud computing is an important topic in the field of information technology and computer system. Several companies and educational institutes have deployed cloud infrastructures to overcome their problems such as easy data access, software updates with minimal cost, large or unlimited storage, efficient cost factor, backup storage and disaster recovery, and some other benefits if compare with the traditional network infrastructures. The paper present the study of cloud computing technology for marine environmental data and processing. Cloud computing of marine environment information is proposed for the integration and sharing of marine information resources. It is highly desirable to perform empirical requiring numerous interactions with web servers and transfers of very large archival data files without affecting operational information system infrastructure. In this paper, we consider the cloud computing for virtual testbed to minimize the cost. That is related to real time infrastructure.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




