All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
The computer analysis of primary structures for inulinases from various producers
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 85-92Views (last year): 2. Citations: 4 (RSCI).It is shown that the basic amount of homologous parts at inulinases from various species is presented by Gln, Asn and Glu residues. Carboxyl groups of Asp and Glu side chains (a part of active center of inulinase) can play the role of contact groups for substrate molecules and also carry out acid-base catalysis. Comparison of primary structures of inulinases has shown that frequency of residue substitution is very variable along the polypeptide chain. The phylogenetic tree of inulinases from various sources is constructed. It is revealed that high homology degree is characteristic for enzymes from Aspergillus awamori, Aspergillus niger and Aspergillus ficuum. Rather small relation degree is shown for endo- and exo-inulinases.
-
Numerical investigation of spatially periodic rolls structures of liquid dielectrics isothermal electro–convection in a plane–parallel electrode system
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 91-98Views (last year): 1. Citations: 1 (RSCI).Isothermal electroconvection in a dielectric liquid arising in a plane-parallel electrode system due to unipolar injection of charges from the cathode is considered. Spatially periodic rolls structures stability is investigated.
-
Methodology and program for the storage and statistical analysis of the results of computer experiment
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 589-595Views (last year): 1. Citations: 5 (RSCI).The problem of accumulation and the statistical analysis of computer experiment results are solved. The main experiment program is considered as the data source. The results of main experiment are collected on specially prepared sheet Excel with pre-organized structure for the accumulation, statistical processing and visualization of the data. The created method and the program are used at efficiency research of the scientific researches which are carried out by authors.
-
Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992Views (last year): 3. Citations: 2 (RSCI).In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to standard a 8-point earthquake accelerograms, was made.
-
Numerical simulation of adhesive technology application in tooth root canal on restoration properties
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1069-1079Views (last year): 3.The aim of the present study is to show how engineering approaches and ideas work in clinical restorative dentistry, in particular, how they affect the restoration design and durability of restored endodontically treated teeth. For these purposes a 3D-computational model of a first incisor including the elements of hard tooth tissues, periodontal ligament, surrounding bone structures and restoration itself has been constructed and numerically simulated for a variety of restoration designs under normal chewing loadings. It has been researched the effect of different adhesive technologies in root canal on the functional characteristics of a restored tooth. The 3D model designed could be applied for preclinical diagnostics to determine the areas of possible fractures of a restored tooth and prognosticate its longevity.
-
Relation between performance of organization and its structure during sudden and smoldering crises
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 685-706Views (last year): 2. Citations: 2 (RSCI).The article describes a mathematical model that simulates performance of a hierarchical organization during an early stage of a crisis. A distinguished feature of this stage of crisis is presence of so called early warning signals containing information on the approaching event. Employees are capable of catching the early warnings and of preparing the organization for the crisis based on the signals’ meaning. The efficiency of the preparation depends on both parameters of the organization and parameters of the crisis. The proposed simulation agentbased model is implemented on Java programming language and is used for conducting experiments via Monte- Carlo method. The goal of the experiments is to compare how centralized and decentralized organizational structures perform during sudden and smoldering crises. By centralized organizations we assume structures with high number of hierarchy levels and low number of direct reports of every manager, while decentralized organizations mean structures with low number of hierarchy levels and high number of direct reports of every manager. Sudden crises are distinguished by short early stage and low number of warning signals, while smoldering crises are defined as crises with long lasting early stage and high number of warning signals not necessary containing important information. Efficiency of the organizational performance during early stage of a crisis is measured by two parameters: percentage of early warnings which have been acted upon in order to prepare organization for the crisis, and time spent by top-manager on working with early warnings. As a result, we show that during early stage of smoldering crises centralized organizations process signals more efficiently than decentralized organizations, while decentralized organizations handle early warning signals more efficiently during early stage of sudden crises. However, occupation of top-managers during sudden crises is higher in decentralized organizations and it is higher in centralized organizations during smoldering crises. Thus, neither of the two classes of organizational structures is more efficient by the two parameters simultaneously. Finally, we conduct sensitivity analysis to verify the obtained results.
-
Mathematical modelling of the non-Newtonian blood flow in the aortic arc
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 259-269Views (last year): 13.The purpose of research was to develop a mathematical model for pulsating blood flow in the part of aorta with their branches. Since the deformation of this most solid part of the aorta is small during the passage of the pulse wave, the blood vessels were considered as non-deformable curved cylinders. The article describes the internal structure of blood and some internal structural effects. This analysis shows that the blood, which is essentially a suspension, can only be regarded as a non-Newtonian fluid. In addition, the blood can be considered as a liquid only in the blood vessels, diameter of which is much higher than the characteristic size of blood cells and their aggregate formations. As a non-Newtonian fluid the viscous liquid with the power law of the relationship of stress with shift velocity was chosen. This law can describe the behaviour not only of liquids but also dispersions. When setting the boundary conditions at the entrance into aorta, reflecting the pulsating nature of the flow of blood, it was decided not to restrict the assignment of the total blood flow, which makes no assumptions about the spatial velocity distribution in a cross section. In this regard, it was proposed to model the surface envelope of this spatial distribution by a part of a paraboloid of rotation with a fixed base radius and height, which varies in time from zero to maximum speed value. The special attention was paid to the interaction of blood with the walls of the vessels. Having regard to the nature of this interaction, the so-called semi-slip condition was formulated as the boundary condition. At the outer ends of the aorta and its branches the amounts of pressure were given. To perform calculations the tetrahedral computer network for geometric model of the aorta with branches has been built. The total number of meshes is 9810. The calculations were performed with use of the software package ABACUS, which has also powerful tools for creating geometry of the model and visualization of calculations. The result is a distribution of velocities and pressure at each time step. In areas of branching vessels was discovered temporary presence of eddies and reverse currents. They were born via 0.47 s from the beginning of the pulse cycle and disappeared after 0.14 s.
-
Mathematical modeling of thermophysical processes in the wall of the Baker cyst, when intra-cystic fluid is heated by laser radiation 1.47 μm in length
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 103-112Views (last year): 21. Citations: 2 (RSCI).The work is devoted to the study of the theoretical value of destructive influence on normal tissues of an organism by infrared radiation that goes beyond the treated pathological focus. This situation is possible if the direct laser radiation on the tissues is extremely long-acting. The solution to this problem can be the uniform distribution of heat inside the volume through indirect heating of the liquid, which contributes to minimal damage to the perifocal structures. A non-stationary thermophysical model of the process of heat propagation in biological tissues is presented, allowing to carry out studies of energy transfer from internal liquid contents of Baker's cyst heated by infrared laser radiation of a given specific power through a certain thickness of its wall to surrounding biological tissues. Calculation of the spacetime temperature distribution in the cyst wall and surrounding fat tissue is carried out by the finite-difference method. The time of effective exposure to temperature on the entire thickness of the cyst wall was estimated to be 55 ° C on its outer surface. The safety procedure ensures the exposure duration of this value is not more than 10 seconds.
As a result of the calculations carried out, it is established that there are several operating modes of a surgical laser that meet all the safety requirements with a simultaneous effective procedure. Local one-sided hyperthermia of the synovial membrane and subsequent coagulation of the entire wall thickness due to heat transfer contributes to the elimination of the cavity neoplasm of the popliteal region. With a thickness of 3 mm, the heating mode is satisfactory, under which the exposure time lasts about 200 seconds, and the specific power of the laser radiation in the internal medium of the liquid contents of the Baker cyst is approximately 1.
-
The key approaches and review of current researches on dynamics of structured and interacting populations
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151Views (last year): 40. Citations: 2 (RSCI).The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.
-
Hybrid models in biomedical applications
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 287-309Views (last year): 25.The paper presents a review of recent developments of hybrid discrete-continuous models in cell population dynamics. Such models are widely used in the biological modelling. Cells are considered as individual objects which can divide, die by apoptosis, differentiate and move under external forces. In the simplest representation cells are considered as soft spheres, and their motion is described by Newton’s second law for their centers. In a more complete representation, cell geometry and structure can be taken into account. Cell fate is determined by concentrations of intra-cellular substances and by various substances in the extracellular matrix, such as nutrients, hormones, growth factors. Intra-cellular regulatory networks are described by ordinary differential equations while extracellular species by partial differential equations. We illustrate the application of this approach with some examples including bacteria filament and tumor growth. These examples are followed by more detailed studies of erythropoiesis and immune response. Erythrocytes are produced in the bone marrow in small cellular units called erythroblastic islands. Each island is formed by a central macrophage surrounded by erythroid progenitors in different stages of maturity. Their choice between self-renewal, differentiation and apoptosis is determined by the ERK/Fas regulation and by a growth factor produced by the macrophage. Normal functioning of erythropoiesis can be compromised by the development of multiple myeloma, a malignant blood disorder which leads to a destruction of erythroblastic islands and to sever anemia. The last part of the work is devoted to the applications of hybrid models to study immune response and the development of viral infection. A two-scale model describing processes in a lymph node and other organs including the blood compartment is presented.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




