All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Influence of harvesting on the dynamics of predator-prey community with age-structure for prey
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 823-844The paper studies the influence of selective harvest on dynamic modes of the «predator–prey» community with age structure for prey. We use a slight modification of the Nicholson-Bailey model to describe the interaction between predator and prey. We assume the prey population size is regulated by a decrease in survival rate of juvenile with an increase in the size of age class. The aim is to study the mechanisms of formation and evolution of dynamic modes for the structured «predator–prey» community model due to selective harvesting. We considered the cases when a harvest of some part of predator or prey population or one of the prey’s age classes is realized. The conditions of stable coexistence of interacting species and scenarios of the occurrence of oscillatory modes of abundance are studied. It is shown the harvesting of only young individuals of prey or simultaneous removal of young and adult individuals leads to expansion of parameter space domain with stable dynamics of prey population both with and without a predator. At the same time, the bistability domain narrows, in which changing initial conditions leads to the predator either remains in the community or dies from lack of food. In the case of the harvest for prey adult individuals or predator, the predator preservation in the community is ensured by high values of the prey birth rate, moreover bistability domain expands. With the removal of both juvenile preys and predators, an increase in the survival rates of adult prey leads to stabilization of the community dynamics. The juveniles’ harvest can lead to damping of oscillations and stabilize the prey dynamics in the predator absence. Moreover, it can change the scenario of the coexistence of species — from habitation of preys without predators to a sustainable coexistence of both species. The harvest of some part of predator or prey or the prey’s older age class can lead to both oscillations damping and stable dynamics of the interacting species, and to the destruction of the community, that is, to the death of predator.
-
Extracting knowledge from text messages: overview and state-of-the-art
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.
-
Usage of boundary layer grids in numerical simulations of viscous phenomena in of ship hydrodynamics problems
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 995-1008Numerical simulation of hull flow, marine propellers and other basic problems of ship hydrodynamics using Cartesian adaptive locally-refined grids is advantageous with respect to numerical setup and makes an express analysis very convenient. However, when more accurate viscous phenomena are needed, they condition some problems including a sharp increase of cell number due to high levels of main grid adaptation needed to resolve boundary layers and time step decrease in simulations with a free surface due to decrease of transit time in adapted cells. To avoid those disadvantages, additional boundary layer grids are suggested for resolution of boundary layers. The boundary layer grids are one-dimensional adaptations of main grid layers nearest to a wall, which are built along a normal direction. The boundary layer grids are additional (or chimerical), their volumes are not subtracted from main grid volumes. Governing equations of flow are integrated in both grids simultaneously, and the solutions are merged according to a special algorithm. In simulations of ship hull flow boundary layer grids are able to provide sufficient conditions for low-Reynolds turbulence models and significantly improve flow structure in continues boundary layers along smooth surfaces. When there are flow separations or other complex phenomena on a hull surface, it can be subdivided into regions, and the boundary layer grids should be applied to the regions with simple flow only. This still provides a drastic decrease of computational efforts. In simulations of marine propellers, the boundary layer grids are able to provide refuse of wall functions on blade surfaces, what leads to significantly more accurate hydrodynamic forces. Altering number and configuration of boundary grid layers, it is possible to vary a boundary layer resolution without change of a main grid. This makes the boundary layer grids a suitable tool to investigate scale effects in both problems considered.
-
Development of a computational environment for mathematical modeling of superconducting nanostructures with a magnet
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1349-1358Now days the main research activity in the field of nanotechnology is aimed at the creation, study and application of new materials and new structures. Recently, much attention has been attracted by the possibility of controlling magnetic properties using a superconducting current, as well as the influence of magnetic dynamics on the current–voltage characteristics of hybrid superconductor/ferromagnet (S/F) nanostructures. In particular, such structures include the S/F/S Josephson junction or molecular nanomagnets coupled to the Josephson junctions. Theoretical studies of the dynamics of such structures need processes of a large number of coupled nonlinear equations. Numerical modeling of hybrid superconductor/magnet nanostructures implies the calculation of both magnetic dynamics and the dynamics of the superconducting phase, which strongly increases their complexity and scale, so it is advisable to use heterogeneous computing systems.
In the course of studying the physical properties of these objects, it becomes necessary to numerically solve complex systems of nonlinear differential equations, which requires significant time and computational resources.
The currently existing micromagnetic algorithms and frameworks are based on the finite difference or finite element method and are extremely useful for modeling the dynamics of magnetization on a wide time scale. However, the functionality of existing packages does not allow to fully implement the desired computation scheme.
The aim of the research is to develop a unified environment for modeling hybrid superconductor/magnet nanostructures, providing access to solvers and developed algorithms, and based on a heterogeneous computing paradigm that allows research of superconducting elements in nanoscale structures with magnets and hybrid quantum materials. In this paper, we investigate resonant phenomena in the nanomagnet system associated with the Josephson junction. Such a system has rich resonant physics. To study the possibility of magnetic reversal depending on the model parameters, it is necessary to solve numerically the Cauchy problem for a system of nonlinear equations. For numerical simulation of hybrid superconductor/magnet nanostructures, a computing environment based on the heterogeneous HybriLIT computing platform is implemented. During the calculations, all the calculation times obtained were averaged over three launches. The results obtained here are of great practical importance and provide the necessary information for evaluating the physical parameters in superconductor/magnet hybrid nanostructures.
-
Software complex for numerical modeling of multibody system dynamics
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.
The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.
The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.
-
Generating database schema from requirement specification based on natural language processing and large language model
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1703-1713A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.
-
Motion control of a rigid body in viscous fluid
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 659-675Views (last year): 2. Citations: 1 (RSCI).We consider the optimal motion control problem for a mobile device with an external rigid shell moving along a prescribed trajectory in a viscous fluid. The mobile robot under consideration possesses the property of self-locomotion. Self-locomotion is implemented due to back-and-forth motion of an internal material point. The optimal motion control is based on the Sugeno fuzzy inference system. An approach based on constructing decision trees using the genetic algorithm for structural and parametric synthesis has been proposed to obtain the base of fuzzy rules.
-
Control theory methods for creating market structures
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 839-859Views (last year): 4. Citations: 4 (RSCI).Control theory methods for creating market structures are discussed for two cases: when market participants are pursuing aims 1) of maximal growth and 2) of maximum economic efficiency of their firms. For the first case method based on variable structure systems principles is developed. For the second case dynamic game approach is proposed based on computation of Nash–Cournot and Stackelberg strategies with the help of Z-transform.
-
Comparing the effectiveness of computer mass appraisal methods
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 185-196Views (last year): 2.Location-based models — one of areas of CAMA (computer-assisted mass apriasal) building. When taking into account the location of the object using spatial autoregressive models structure of models (type of spatial autocorrelation, choice of “nearest neighbors”) cannot always be determined before its construction. Moreover, in practice there are situations where more efficient methods are taking into account different rates depending on the type of the object from its location. In this regard there are important issues in spatial methods area:
– fields of methods efficacy;
– sensitivity of the methods on the choice of the type of spatial model and on the selected number of nearest neighbors.
This article presents a methodology for assessing the effectiveness of computer evaluation of real estate objects. There are results of approbation on methods based on location information of the objects.
-
Mathematical modeling of low invasive tumor growth with account of inactivation of vascular endothelial growth factor by antiangiogenic drug
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 361-374Views (last year): 4. Citations: 1 (RSCI).A mathematical model of tumor growth in tissue taking into account angiogenesis and antiangiogenic therapy is developed. In the model the convective flows in tissue are considered as well as individual motility of tumor cells. It is considered that a cell starts to migrate if the nutrient concentration falls lower than the critical level and returns into proliferation in the region with high nutrient concentration. Malignant cells in the state of metabolic stress produce vascular endothelial growth factor (VEGF), stimulating tumor angiogenesis, which increases the nutrient supply. In this work an antiangiogenic drug which bounds irreversibly to VEGF, converting it to inactive form, is modeled. Numerical analysis of influence of antiangiogenic drug concentration and efficiency on tumor rate of growth and structure is performed. It is shown that antiangiogenic therapy can decrease the growth of low-invasive tumor, but is not able to stop it completely.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




