All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Classification of dynamical switching regimes in a three-layered ferromagnetic nanopillar governed by spin-polarized injection current and external magnetic field. II. Perpendicular anisotropy
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 755-764Views (last year): 4. Citations: 1 (RSCI).The mathematical model of a three-layered Co/Cu/Co nanopillar for MRAM cell with one fixed and one free layer was investigated in the approximation of uniformly distributed magnetization. The anisotropy axis is perpendicular to the layers (so-called perpendicular anisotropy). Initially the magnetization of the free layer is oriented along the anisotropy axis in the position accepted to be “zero”. Simultaneous magnetic field and spinpolarized current engaging can reorient the magnetization to another position which in this context can be accepted as “one”. The mathematical description of the effect is based on the classical vector Landau–Lifshits equation with the dissipative term in the Gilbert form. In our model we took into account the interactions of the magnetization with an external magnetic field and such effective magnetic fields as an anisotropy and demagnetization ones. The influence of the spin-polarized injection current is taken into account in the form of Sloczewski–Berger term. The model was reduced to the set of three ordinary differential equations with the first integral. It was shown that at any current and field the dynamical system has two main equilibrium states on the axis coincident with anisotropy axis. It was ascertained that in contrast with the longitudinal-anisotropy model, in the model with perpendicular anisotropy there are no other equilibrium states. The stability analysis of the main equilibrium states was performed. The bifurcation diagrams characterizing the magnetization dynamics at different values of the control parameters were built. The classification of the phase portraits on the unit sphere was performed. The features of the dynamics at different values of the parameters were studied and the conditions of the magnetization reorientation were determined. The trajectories of magnetization switching were calculated numerically using the Runge–Kutta method. The parameter values at which limit cycles exist were determined. The threshold values for the switching current were found analytically. The threshold values for the structures with longitudinal and perpendicular anisotropy were compared. It was established that in the structure with the perpendicular anisotropy at zero field the switching current is an order lower than in the structure with the longitudinal one.
-
CABARET scheme implementation for free shear layer modeling
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903Views (last year): 17.In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.
The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods
-
Analysis of a numerical method for studying upward flame spread over solid material
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 755-774Views (last year): 33.Reduction of the fire hazard of polymeric materials is one of the important scientific and technical problems. Since complexity of experimental procedures associated with flame spread, establishing reacting flows theoretical basics turned out to be crucial field of modern fundamental science. In order to determine parameters of flame spread over solid combustible materials numerical modelling methods have to be improved. Large amount of physical and chemical processes taking place needed to be resolved not just separately one by one but in connection with each other in gas and solid phases.
Upward flame spread over vertical solid combustible material is followed by unsteady eddy structures of gas flow in the vicinity of flame zone caused by thermal instability and natural convection forces accelerating hot combustion products. At every moment different amount of heat energy is transferred from hot gas-phase flame to solid material because of eddy flow structures. Therefore, satisfactory heat flux and eddy flow modelling are important to estimate flame spread rate.
In the current study we evaluated parameters of numerical method for flame spread over solid combustible material problem taking into account coupled nature of complex interaction between gas phase, solid material and eddy flow resulted from natural convection. We studied aspects of different approximation schemes used in differential equations integration process over space and time, of fields relaxation during iterations procedure carried out inside time step, of different time step values.
Mathematical model formulated allows to simulate flame spread over solid combustible material. Fluid dynamics is modeled by Navier – Stokes system of equations, eddy flow is described by combined turbulent model RANS–LES (DDES), turbulent combustion is resolved by modified turbulent combustion model Eddy Break-Up taking into account kinetic effects, radiation transfer is modeled by spherical harmonics method of first order approximation (P1). The equations presented are solved in OpenFOAM software.
-
The purposeful transformation of mathematical models based on strategic reflection
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 815-831The study of complex processes in various spheres of human activity is traditionally based on the use of mathematical models. In modern conditions, the development and application of such models is greatly simplified by the presence of high-speed computer equipment and specialized tools that allow, in fact, designing models from pre-prepared modules. Despite this, the known problems associated with ensuring the adequacy of the model, the reliability of the original data, the implementation in practice of the simulation results, the excessively large dimension of the original data, the joint application of sufficiency heterogeneous mathematical models in terms of complexity and integration of the simulated processes are becoming increasingly important. The more critical may be the external constraints imposed on the value of the optimized functional, and often unattainable within the framework of the constructed model. It is logical to assume that in order to fulfill these restrictions, a purposeful transformation of the original model is necessary, that is, the transition to a mathematical model with a deliberately improved solution. The new model will obviously have a different internal structure (a set of parameters and their interrelations), as well as other formats (areas of definition) of the source data. The possibilities of purposeful change of the initial model investigated by the authors are based on the realization of the idea of strategic reflection. The most difficult in mathematical terms practical implementation of the author's idea is the use of simulation models, for which the algorithms for finding optimal solutions have known limitations, and the study of sensitivity in most cases is very difficult. On the example of consideration of rather standard discrete- event simulation model the article presents typical methodological techniques that allow ranking variable parameters by sensitivity and, in the future, to expand the scope of definition of variable parameter to which the simulation model is most sensitive. In the transition to the “improved” model, it is also possible to simultaneously exclude parameters from it, the influence of which on the optimized functional is insignificant, and vice versa — the introduction of new parameters corresponding to real processes into the model.
-
Singular solutions of the multidimensional differential Clairaut-type equations in partial derivatives with trigonometric functions
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 33-42We study the class of first order differential equations in partial derivatives of the Clairaut-type, which are a multidimensional generalization of the ordinary differential Clairaut equation to the case when the unknown function depends on many variables. It is known that the general solution of the Clairaut-type partial differential equation is a family of integral (hyper-) planes. In addition to the general solution, there can be particular solutions, and in some cases a special (singular) solution can be found.
The aim of the paper is to find a singular solution of the Clairaut-type equation in partial derivatives of the first order with a special right-hand side. In the paper, we formulate a criterion for the existence of a special solution of a differential equation of Clairaut type in partial derivatives for the case, when the function of the derivatives is a function of a linear combination of partial derivatives of unknown function. We obtain the singular solution for this type of differential equations with trigonometric functions of a linear combination of $n$-independent variables with arbitrary coefficients. It is shown that the task of finding a special solution is reduced to solving a system of transcendental equations containing initial trigonometric functions. The article describes the procedure for evaluation of a singular solution of Clairaut-type equation; the main idea is to find not partial derivatives of the unknown function, as functions of independent variables, but linear combinations of partial derivatives with some coefficients. This method can be used to find special solutions of Clairaut-type equations, for which this structure is preserved.
The work is organized as follows. The Introduction contains a brief review of some modern results related to the topic of the study of Clairaut-type equations. The Second part is the main one and it includes a formulation of the main task of the work and describes a method of evaluation of singular solutions for the Clairaut-type equations in partial derivatives with a special right-hand side. The main result of the work is to find singular solutions of the Clairaut-type equations containing trigonometric functions. These solutions are given in the main part of the work as an illustrating example for the method described earlier. In Conclusion, we formulate the results of the work and describe future directions of the research.
-
Modeling the structure of a complex system based on estimation of the measure of interaction of subsystems
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 707-719The using of determining the measure of interaction between channels when choosing the configuration structure of a control system for complex dynamic objects is considered in the work. The main methods for determining the measure of interaction between subsystems of complex control systems based on the methods RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix) are presented. When choosing a control configuration, simple configurations are preferable, as they are simple in design, maintenance and more resistant to failures. However, complex configurations provide higher performance control systems. Processes in large dynamic objects are characterized by a high degree of interaction between process variables. For the design of the control structure interaction measures are used, namely, the selection of the control structure and the decision on the configuration of the controller. The choice of control structure is to determine which dynamic connections should be used to design the controller. When a structure is selected, connections can be used to configure the controller. For large systems, it is proposed to pre-group the components of the vectors of input and output signals of the actuators and sensitive elements into sets in which the number of variables decreases significantly in order to select a control structure. A quantitative estimation of the decentralization of the control system based on minimizing the sum of the off-diagonal elements of the PM matrix is given. An example of estimation the measure of interaction between components of strong coupled subsystems and the measure of interaction between components of weak coupled subsystems is given. A quantitative estimation is given of neglecting the interaction of components of weak coupled subsystems. The construction of a weighted graph for visualizing the interaction of the subsystems of a complex system is considered. A method for the formation of the controllability gramian on the vector of output signals that is invariant to state vector transformations is proposed in the paper. An example of the decomposition of the stabilization system of the components of the flying vehicle angular velocity vector is given. The estimation of measures of the mutual influence of processes in the channels of control systems makes it possible to increase the reliability of the systems when accounting for the use of analytical redundancy of information from various devices, which reduces the mass and energy consumption. Methods for assessing measures of the interaction of processes in subsystems of control systems can be used in the design of complex systems, for example, motion control systems, orientation and stabilization systems of vehicles.
-
An approach for the nonconvex uniformly concave structured saddle point problem
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.
-
Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.
-
Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.
-
Comparison of complex dynamical systems based on topological data analysis
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 513-525The paper considers the possibility of comparing and classifying dynamical systems based on topological data analysis. Determining the measures of interaction between the channels of dynamic systems based on the HIIA (Hankel Interaction Index Array) and PM (Participation Matrix) methods allows you to build HIIA and PM graphs and their adjacency matrices. For any linear dynamic system, an approximating directed graph can be constructed, the vertices of which correspond to the components of the state vector of the dynamic system, and the arcs correspond to the measures of mutual influence of the components of the state vector. Building a measure of distance (proximity) between graphs of different dynamic systems is important, for example, for identifying normal operation or failures of a dynamic system or a control system. To compare and classify dynamic systems, weighted directed graphs corresponding to dynamic systems are preliminarily formed with edge weights corresponding to the measures of interaction between the channels of the dynamic system. Based on the HIIA and PM methods, matrices of measures of interaction between the channels of dynamic systems are determined. The paper gives examples of the formation of weighted directed graphs for various dynamic systems and estimation of the distance between these systems based on topological data analysis. An example of the formation of a weighted directed graph for a dynamic system corresponding to the control system for the components of the angular velocity vector of an aircraft, which is considered as a rigid body with principal moments of inertia, is given. The method of topological data analysis used in this work to estimate the distance between the structures of dynamic systems is based on the formation of persistent barcodes and persistent landscape functions. Methods for comparing dynamic systems based on topological data analysis can be used in the classification of dynamic systems and control systems. The use of traditional algebraic topology for the analysis of objects does not allow obtaining a sufficient amount of information due to a decrease in the data dimension (due to the loss of geometric information). Methods of topological data analysis provide a balance between reducing the data dimension and characterizing the internal structure of an object. In this paper, topological data analysis methods are used, based on the use of Vietoris-Rips and Dowker filtering to assign a geometric dimension to each topological feature. Persistent landscape functions are used to map the persistent diagrams of the method of topological data analysis into the Hilbert space and then quantify the comparison of dynamic systems. Based on the construction of persistent landscape functions, we propose a comparison of graphs of dynamical systems and finding distances between dynamical systems. For this purpose, weighted directed graphs corresponding to dynamical systems are preliminarily formed. Examples of finding the distance between objects (dynamic systems) are given.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




