Результаты поиска по 'two-dimensional model':
Найдено статей: 87
  1. Malikov Z.M., Nazarov F.K., Madaliev M.E.
    Numerical study of Taylor – Cuetta turbulent flow
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 395-408

    In this paper, the turbulent Taylor – Couette flow is investigated using two-dimensional modeling based on the averaged Navier – Stokes (RANS) equations and a new two-fluid approach to turbulence at Reynolds numbers in the range from 1000 to 8000. The flow due to a rotating internal and stationary external cylinders. The case of ratio of cylinder diameters 1:2 is considered. It is known that the emerging circular flow is characterized by anisotropic turbulence and mathematical modeling of such flows is a difficult task. To describe such flows, either direct modeling methods are used, which require large computational costs, or rather laborious Reynolds stress methods, or linear RANS models with special corrections for rotation, which are able to describe anisotropic turbulence. In order to compare different approaches to turbulence modeling, the paper presents the numerical results of linear RANS models SARC, SST-RC, Reynolds stress method SSG/LRR-RSM-w2012, DNS direct turbulence modeling, as well as a new two-fluid model. It is shown that the recently developed twofluid model adequately describes the considered flow. In addition, the two-fluid model is easy to implement numerically and has good convergence.

  2. Krektuleva R.A., Cherepanov O.I., Cherepanov R.O.
    Numerical solution of a two-dimensional quasi-static problem of thermoplasticity: residual thermal stress calculation for a multipass welding of heterogeneous steels
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 345-356

    A two-dimensional mathematical model was developed for estimating the stresses in welded joints formed during multipass welding of multilayer steels. The basis of the model is the system of equations that includes the Lagrange variational equation of incremental plasticity theory and the variational equation of heat conduction, which expresses the principle of M. Biot. Variational-difference method was used to solve the problems of heat conductivity and calculation of the transient temperature field, and then at each time step – for the quasi-static problem of thermoplasticity. The numerical scheme is based on triangular meshes, which gives a more accuracy in describing the boundaries of structural elements as compared to rectangular grids.

    Views (last year): 4. Citations: 6 (RSCI).
  3. Ilyin O.V.
    The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722

    In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.

    In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.

    Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.

    Views (last year): 2.
  4. Vasiliev E.V., Perzhu A.V., Korol A.O., Kapitan D.Y., Rubin A.E., Soldatov K.S., Kapitan V.U.
    Numerical simulation of two-dimensional magnetic skyrmion structures
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061

    Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.

    The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.

    Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.

    The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.

  5. Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  6. Aristov V.V., Stroganov A.V., Yastrebov A.D.
    Application of the kinetic type model for study of a spatial spread of COVID-19
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 611-627

    A simple model based on a kinetic-type equation is proposed to describe the spread of a virus in space through the migration of virus carriers from a certain center. The consideration is carried out on the example of three countries for which such a one-dimensional model is applicable: Russia, Italy and Chile. The geographical location of these countries and their elongation in the direction from the centers of infection (Moscow, Milan and Lombardia in general, as well as Santiago, respectively) makes it possible to use such an approximation. The aim is to determine the dynamic density of the infected in time and space. The model is two-parameter. The first parameter is the value of the average spreading rate associated with the transfer of infected moving by transport vehicles. The second parameter is the frequency of the decrease of the infected as they move through the country, which is associated with the passengers reaching their destination, as well as with quarantine measures. The parameters are determined from the actual known data for the first days of the spatial spread of the epidemic. An analytical solution is being built; simple numerical methods are also used to obtain a series of calculations. The geographical spread of the disease is a factor taken into account in the model, the second important factor is that contact infection in the field is not taken into account. Therefore, the comparison of the calculated values with the actual data in the initial period of infection coincides with the real data, then these data become higher than the model data. Those no less model calculations allow us to make some predictions. In addition to the speed of infection, a similar “speed of recovery” is possible. When such a speed is found for the majority of the country's population, a conclusion is made about the beginning of a global recovery, which coincides with real data.

  7. Kashchenko N.M., Ishanov S.A., Zubkov E.V.
    Numerical model of transport in problems of instabilities of the Earth’s low-latitude ionosphere using a two-dimensional monotonized Z-scheme
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1011-1023

    The aim of the work is to study a monotone finite-difference scheme of the second order of accuracy, created on the basis of a generalization of the one-dimensional Z-scheme. The study was carried out for model equations of the transfer of an incompressible medium. The paper describes a two-dimensional generalization of the Z-scheme with nonlinear correction, using instead of streams oblique differences containing values from different time layers. The monotonicity of the obtained nonlinear scheme is verified numerically for the limit functions of two types, both for smooth solutions and for nonsmooth solutions, and numerical estimates of the order of accuracy of the constructed scheme are obtained.

    The constructed scheme is absolutely stable, but it loses the property of monotony when the Courant step is exceeded. A distinctive feature of the proposed finite-difference scheme is the minimality of its template. The constructed numerical scheme is intended for models of plasma instabilities of various scales in the low-latitude ionospheric plasma of the Earth. One of the real problems in the solution of which such equations arise is the numerical simulation of highly nonstationary medium-scale processes in the earth’s ionosphere under conditions of the appearance of the Rayleigh – Taylor instability and plasma structures with smaller scales, the generation mechanisms of which are instabilities of other types, which leads to the phenomenon F-scattering. Due to the fact that the transfer processes in the ionospheric plasma are controlled by the magnetic field, it is assumed that the plasma incompressibility condition is fulfilled in the direction transverse to the magnetic field.

  8. The influence of the process of initiating a rapid local heat release near surface streamlined by supersonic gas (air) flow on the separation region that occurs during a fast turn of the flow was investigated. This surface consists of two planes that form obtuse angle when crossing, so that when flowing around the formed surface, the supersonic gas flow turns by a positive angle, which forms an oblique shock wave that interacts with the boundary layer and causes flow separation. Rapid local heating of the gas above the streamlined surface simulates long spark discharge of submicrosecond duration that crosses the flow. The gas heated in the discharge zone interacts with the separation region. The flow can be considered two-dimensional, so the numerical simulation is carried out in a two-dimensional formulation. Numerical simulation was carried out for laminar regime of flow using the sonicFoam solver of the OpenFOAM software package.

    The paper describes a method for constructing a two-dimensional computational grid using hexagonal cells. A study of grid convergence has been carried out. A technique is given for setting the initial profiles of the flow parameters at the entrance to the computational domain, which makes it possible to reduce the computation time by reducing the number of computational cells. A method for non-stationary simulation of the process of rapid local heating of a gas is described, which consists in superimposing additional fields of increased pressure and temperature values calculated from the amount of energy deposited in oncoming supersonic gas flow on the corresponding fields of values obtained in the stationary case. The parameters of the energy input into the flow corresponding to the parameters of the electric discharge process, as well as the parameters of the oncoming flow, are close to the experimental values.

    During analyzing numerical simulation data it was found that the initiation of rapid local heating leads to the appearance of a gas-dynamic perturbation (a quasi-cylindrical shock wave and an unsteady swirling flow), which, when interacting with the separation region, leads to a displacement of the separation point downstream. The paper considers the question of the influence of the energy spent on local heating of the gas, and of the position on the streamlined surface of the place of heating relative to the separation point, on the value of its maximum displacement.

  9. Pertsev N.V., Loginov K.K.
    Modeling the initial period of HIV-1 infection spread in the lymph node based on delay differential equations
    Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1181-1203

    A mathematical model describing the dynamics of HIV-1 infection in a single lymph node during the initial period of infection development is presented. Within the framework of the model, the infection of an individual is set by a nonnegative finite function describing the rate of entry of the initial viral particles into the lymph node. The equations of the model are derived with consideration of two factors: 1) the interaction of viral particles with naive CD4+ T lymphocytes in various phases of the cell cycle; 2) contact interaction between multiplying naive CD4+ T lymphocytes and infected CD4+ T lymphocytes producing viral particles. The specific feature of intercellular contact interactions is the formation of complexes consisting of pairs of these cells. The duration of the complexes’ existence is determined by the distribution functions over finite time intervals. The model is presented as a high-dimensional system of nonlinear delay differential equations, including two equations with distributed delay, and is supplemented with non-negative initial data. In the absence of HIV-1 infection, the model is reduced to four delay differential equations describing the number of naive CD4+ T-lymphocytes in different phases of the cell cycle. The global solvability of the model (the existence and uniqueness of the solution on the semi-axis) is determined, and the non-negativity of the solution components is established. To carry out computational experiments with the model, an algorithm for numerically solving the used system of differential equations are developed based on the semi-implicit Euler scheme for the case of uniform distribution of durations of the complexes existence. The results of computational experiments aimed at approximation the numerical solution of the model to describing the kinetics of HIV-1 infection spread in its acute phase, including the eclipse phase, are presented. The variable used as the observable is the variable describing the number of viral particles per milliliter of blood on days 10–12 after the onset of acute infection. The dynamics of the observable variable is numerically studied depending on the variation of the model parameters reflecting the patterns of complex formation and the formation of cells producing viral particles. The possibility of attenuation of HIV-1 infection in the lymph node at certain values of some of the model parameters is shown.

  10. Parkhomenko P.V.
    Pareto optimal analysis of global warming prevention by geoengineering methods
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1097-1108

    The study is based on a three-dimensional hydrodynamic global climate coupled model, including ocean model with real depths and continents configuration, sea ice evolution model and energy and moisture balance atmosphere model. Aerosol concentration from the year 2010 to 2100 is calculated as a controlling parameter to stabilize mean year surface air temperature. It is shown that by this way it is impossible to achieve the space and seasonal uniform approximation to the existing climate, although it is possible significantly reduce the greenhouse warming effect. Climate will be colder at 0.1–0.2 degrees in the low and mid-latitudes and at high latitudes it will be warmer at 0.2–1.2 degrees. The Pareto frontier is investigated and visualized for two parameters — atmospheric temperature mean square deviation for the winter and summer seasons. The Pareto optimal amount of sulfur emissions would be between 23.5 and 26.5 TgS/year.

    Views (last year): 1. Citations: 3 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"