All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
A minimal model of density-dependent population dynamics incorporating sex structure: simulation and application
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 941-961This study proposes and analyzes a discrete-time mathematical model of population dynamics with seasonal reproduction, taking into account the density-dependent regulation and sex structure. In the model, population birth rate depends on the number of females, while density is regulated through juvenile survival, which decreases exponentially with increasing total population size. Analytical and numerical investigations of the model demonstrate that when more than half of both females and males survive, the population exhibits stable dynamics even at relatively high birth rates. Oscillations arise when the limitation of female survival exceeds that of male survival. Increasing the intensity of male survival limitation can stabilize population dynamics, an effect particularly evident when the proportion of female offspring is low. Depending on parameter values, the model exhibits stable, periodic, or irregular dynamics, including multistability, where changes in current population size driven by external factors can shift the system between coexisting dynamic modes. To apply the model to real populations, we propose an approach for estimating demographic parameters based on total abundance data. The key idea is to reduce the two-component discrete model with sex structure to a delay equation dependent only on total population size. In this formulation, the initial sex structure is expressed through total abundance and depends on demographic parameters. The resulting one-dimensional equation was applied to describe and estimate demographic characteristics of ungulate populations in the Jewish Autonomous Region. The delay equation provides a good fit to the observed dynamics of ungulate populations, capturing long-term trends in abundance. Point estimates of parameters fall within biologically meaningful ranges and produce population dynamics consistent with field observations. For moose, roe deer, and musk deer, the model suggests predominantly stable dynamics, while annual fluctuations are primarily driven by external factors and represent deviations from equilibrium. Overall, these estimates enable the analysis of structured population dynamics alongside short-term forecasting based on total abundance data.
-
Analysis of noise-induced bursting in two-dimensional Hindmarsh–Rose model
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 605-619Views (last year): 1.We study the stochastic dynamics of the two-dimensional Hindmarsh–Rose model in the parametrical zone of coexisting stable equilibria and limit cycles. The phenomenon of noise-induced transitions between the attractors is investigated. Under the random disturbances, equilibrium and periodic regimes combine in bursting regime: the system demonstrates an alternation of small fluctuations near the equilibrium with high amplitude oscillations. This effect is analysed using the stochastic sensitivity function technique and a method of estimation of critical values for noise intensity is proposed.
-
Simulation of the gas condensate reservoir depletion
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1081-1095One of problems in developing the gas condensate fields lies on the fact that the condensed hydrocarbons in the gas-bearing layer can get stuck in the pores of the formation and hence cannot be extracted. In this regard, research is underway to increase the recoverability of hydrocarbons in such fields. This research includes a wide range of studies on mathematical simulations of the passage of gas condensate mixtures through a porous medium under various conditions.
In the present work, within the classical approach based on the Darcy law and the law of continuity of flows, we formulate an initial-boundary value problem for a system of nonlinear differential equations that describes a depletion of a multicomponent gas-condensate mixture in porous reservoir. A computational scheme is developed on the basis of the finite-difference approximation and the fourth order Runge .Kutta method. The scheme can be used for simulations both in the spatially one-dimensional case, corresponding to the conditions of the laboratory experiment, and in the two-dimensional case, when it comes to modeling a flat gas-bearing formation with circular symmetry.
The computer implementation is based on the combination of C++ and Maple tools, using the MPI parallel programming technique to speed up the calculations. The calculations were performed on the HybriLIT cluster of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research.
Numerical results are compared with the experimental data on the pressure dependence of output of a ninecomponent hydrocarbon mixture obtained at a laboratory facility (VNIIGAZ, Ukhta). The calculations were performed for two types of porous filler in the laboratory model of the formation: terrigenous filler at 25 .„R and carbonate one at 60 .„R. It is shown that the approach developed ensures an agreement of the numerical results with experimental data. By fitting of numerical results to experimental data on the depletion of the laboratory reservoir, we obtained the values of the parameters that determine the inter-phase transition coefficient for the simulated system. Using the same parameters, a computer simulation of the depletion of a thin gas-bearing layer in the circular symmetry approximation was carried out.
-
A quasi-periodic two-component dynamical model for cardio-signal synthesis using time-series and the fourth-order Runge–Kutta method
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 143-154Views (last year): 5. Citations: 6 (RSCI).In the article, a quasi-periodic two-component dynamical model with possibility of defining the cardio-cycle morphology, that provides the model with an ability of generating a temporal and a spectral cardiosignal characteristics, including heart rate variability is described. A technique for determining the cardio-cycle morphology to provide realistic cardio-signal form is defined. A method for defining cardio-signal dynamical system by the way of determining a three-dimensional state space and equations which describe a trajectory of point’s motion in this space is presented. A technique for solving equations of motion in the three-dimensional state space of dynamical cardio-signal system using the fourth-order Runge–Kutta method is presented. Based on this model, algorithm and software package are developed. Using software package, a cardio-signal synthesis experiment is conducted and the relationship of cardio-signal diagnostic features is analyzed.
-
Comparison of Arctic zone RF companies with different Polar Index ratings by economic criteria with the help of machine learning tools
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 201-215The paper presents a comparative analysis of the enterprises of the Arctic Zone of the Russian Federation (AZ RF) on economic indicators in accordance with the rating of the Polar index. This study includes numerical data of 193 enterprises located in the AZ RF. Machine learning methods are applied, both standard, from open source, and own original methods — the method of Optimally Reliable Partitions (ORP), the method of Statistically Weighted Syndromes (SWS). Held split, indicating the maximum value of the functional quality, this study used the simplest family of different one-dimensional partition with a single boundary point, as well as a collection of different two-dimensional partition with one boundary point on each of the two combining variables. Permutation tests allow not only to evaluate the reliability of the data of the revealed regularities, but also to exclude partitions with excessive complexity from the set of the revealed regularities. Patterns connected the class number and economic indicators are revealed using the SDT method on one-dimensional indicators. The regularities which are revealed within the framework of the simplest one-dimensional model with one boundary point and with significance not worse than p < 0.001 are also presented in the given study. The so-called sliding control method was used for reliable evaluation of such diagnostic ability. As a result of these studies, a set of methods that had sufficient effectiveness was identified. The collective method based on the results of several machine learning methods showed the high importance of economic indicators for the division of enterprises in accordance with the rating of the Polar index. Our study proved and showed that those companies that entered the top Rating of the Polar index are generally recognized by financial indicators among all companies in the Arctic Zone. However it would be useful to supplement the list of indicators with ecological and social criteria.
-
Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.
-
Method for prediction of aerodynamic characteristics of helicopter rotors based on edge-based schemes in code NOISEtte
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1097-1122The paper gives a detailed description of the developed methods for simulating the turbulent flow around a helicopter rotor and calculating its aerodynamic characteristics. The system of Reynolds-averaged Navier – Stokes equations for a viscous compressible gas closed by the Spalart –Allmaras turbulence model is used as the basic mathematical model. The model is formulated in a non-inertial rotating coordinate system associated with a rotor. To set the boundary conditions on the surface of the rotor, wall functions are used.
The numerical solution of the resulting system of differential equations is carried out on mixed-element unstructured grids including prismatic layers near the surface of a streamlined body.The numerical method is based on the original vertex-centered finite-volume EBR schemes. A feature of these schemes is their higher accuracy which is achieved through the use of edge-based reconstruction of variables on extended quasi-onedimensional stencils, and a moderate computational cost which allows for serial computations. The methods of Roe and Lax – Friedrichs are used as approximate Riemann solvers. The Roe method is corrected in the case of low Mach flows. When dealing with discontinuities or solutions with large gradients, a quasi-one-dimensional WENO scheme or local switching to a quasi-one-dimensional TVD-type reconstruction is used. The time integration is carried out according to the implicit three-layer second-order scheme with Newton linearization of the system of difference equations. To solve the system of linear equations, the stabilized conjugate gradient method is used.
The numerical methods are implemented as a part of the in-house code NOISEtte according to the two-level MPI–OpenMP parallel model, which allows high-performance computations on meshes consisting of hundreds of millions of nodes, while involving hundreds of thousands of CPU cores of modern supercomputers.
Based on the results of numerical simulation, the aerodynamic characteristics of the helicopter rotor are calculated, namely, trust, torque and their dimensionless coefficients.
Validation of the developed technique is carried out by simulating the turbulent flow around the Caradonna – Tung two-blade rotor and the KNRTU-KAI four-blade model rotor in hover mode mode, tail rotor in duct, and rigid main rotor in oblique flow. The numerical results are compared with the available experimental data.
-
A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.
-
Difference splitting schemes for the system of one-dimensional equations of hemodynamics
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.
For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.
-
Modeling of ballistics of an artillery shot taking into account the spatial distribution of parameters and backpressure
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1123-1147The paper provides a comparative analysis of the results obtained by various approaches to modeling the process of artillery shot. In this connection, the main problem of internal ballistics and its particular case of the Lagrange problem are formulated in averaged parameters, where, within the framework of the assumptions of the thermodynamic approach, the distribution of pressure and gas velocity over the projectile space for a channel of variable cross section is taken into account for the first time. The statement of the Lagrange problem is also presented in the framework of the gas-dynamic approach, taking into account the spatial (one-dimensional and two-dimensional axisymmetric) changes in the characteristics of the ballistic process. The control volume method is used to numerically solve the system of Euler gas-dynamic equations. Gas parameters at the boundaries of control volumes are determined using a selfsimilar solution to the Riemann problem. Based on the Godunov method, a modification of the Osher scheme is proposed, which allows to implement a numerical calculation algorithm with a second order of accuracy in coordinate and time. The solutions obtained in the framework of the thermodynamic and gas-dynamic approaches are compared for various loading parameters. The effect of projectile mass and chamber broadening on the distribution of the ballistic parameters of the shot and the dynamics of the projectile motion was studied. It is shown that the thermodynamic approach, in comparison with the gas-dynamic approach, leads to a systematic overestimation of the estimated muzzle velocity of the projectile in the entire range of parameters studied, while the difference in muzzle velocity can reach 35%. At the same time, the discrepancy between the results obtained in the framework of one-dimensional and two-dimensional gas-dynamic models of the shot in the same range of change in parameters is not more than 1.3%.
A spatial gas-dynamic formulation of the backpressure problem is given, which describes the change in pressure in front of an accelerating projectile as it moves along the barrel channel. It is shown that accounting the projectile’s front, considered in the two-dimensional axisymmetric formulation of the problem, leads to a significant difference in the pressure fields behind the front of the shock wave, compared with the solution in the framework of the onedimensional formulation of the problem, where the projectile’s front is not possible to account. It is concluded that this can significantly affect the results of modeling ballistics of a shot at high shooting velocities.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




