Результаты поиска по 'velocity approximation':
Найдено статей: 38
  1. Fakhretdinov M.I., Ekomasov E.G.
    Localized waves of the $\varphi^4$ equation in models with two extended impurities
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 437-449

    In this paper, we consider the interaction of a kink of the $\varphi^4$ equation with two identical extended impurities. An extended impurity is described using a rectangular function. The case of an attractive impurity is analyzed. Using analytical methods, we consider the case of small amplitudes of localized waves, when it is possible to linearize the equations of motion. For the numerical solution, the method of lines for partial differential equations was used. To find the oscillation frequencies of waves localized on impurities, the discrete Fourier transform is used. The kink was launched in the direction of the impurities with different initial velocities. The distance between the two impurities was also varied. It is shown that when a kink interacts with impurities, long-lived localized breather-type waves are excited on them. Their structure and coupled dynamics are investigated. It is determined how, by changing the parameters of the impurities and the distance between them, it is possible to control the type and dynamic parameters of the coupled oscillations of the waves localized on the impurities. Possible solutions in the form of in-phase, antiphase oscillations, in the form of beats are found. The oscillations of localized waves occur with the emission of small-amplitude waves. The spectrum of these emissions consists of two frequencies. The first is approximately equal to $\sqrt{2}$, which corresponds to the frequency value for the wobbling breather tail of the $\varphi^4$ equation. The second is approximately equal to the doubled frequency of impurity mode oscillations. The presence of two possible frequencies for coupled localized oscillations is found both analytically and numerically. It is shown that the frequencies strongly depend on the distance between impurities. With increasing distance between impurities, the frequencies merge into one — frequency obtained for the case of a single impurity. The dependences of the frequencies on the distance between impurities found numerically and analytically coincide well for large distances, when the interaction between impurities is weak, and begin to differ noticeably at small distances, when the interaction between impurities is strong. The analytical value of the obtained frequencies is always greater than the numerical ones. It is shown that the dependence of the amplitude of localized waves on the initial kink velocity has several minima and maxima.

  2. Pogorelova E.A.
    Mathematical model of shear stress flows in the vein in the presence of obliterating thrombus
    Computer Research and Modeling, 2010, v. 2, no. 2, pp. 169-182

    In this paper a numerical model for blood flow through a venous bifurcation with an obliterating clot is investigated. We studied propagation of perturbations of blood flow velocity and perturbations of pressure inside the vein. The model is built in acoustic (linear) approximation. Computational results reveal conditions for clot resonance oscillation, which can cause its detachment and thromboembolism.

    Views (last year): 1.
  3. Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Views (last year): 13.
  4. Sadin D.V.
    Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772

    We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.

    The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.

    Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.

  5. For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.

    On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.

    The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.

  6. Sidorenko D.A., Utkin P.S.
    Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766

    In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.

    The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.

  7. An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.

  8. Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  9. Solbakov V.V., Zatsepa S.N., Ivchenko A.A.
    A mathematical model for estimating the zone of intense evaporation of gas condensate during emissions from shallow wells
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 243-259

    Safe carrying out of emergency recovery operations at emergency offshore gas condensate wells is possible when taking into account the hazardous factors that prevent anti-fontanning measures. One of such factors is the gassiness of the operation zone due to the release from the water column of a large amount of light, as compared to air, natural gas, as well as vapours of heavier components of gas condensate. To estimate the distribution of explosive concentration of petroleum product vapours in the near surface layer of the atmosphere, it is necessary to determine the characteristics of the source of the contamination. Based on the analysis of theoretical works concerning to the formation of the velocity field in the upper layer of the sea as a result of large amounts of gas coming to the surface, an analytical model is proposed to calculate the size of the area in which a significant amount of gas condensate coming to the surface is vaporised during accidents at shallow-water wells. The stationary regime of reservoir fluid flow during fountaining of offshore gas and oil wells with an underwater location of their mouths is considered. A low-parametric model of oil product evaporation from films of different thickness is constructed. It is shown that the size of the zone of intensive evaporation at shallow-water wells is determined by the volume flow of liquid fraction, its fractional composition and selected threshold for estimation of oil product vapour flow into the atmosphere. In the context of this work shallow water wells are wells with gas flow rate from 1 to 20 million cubic meters at sea depths of about 50–200 metres. In this case, the formation fluid jet from the wellhead on the seabed is transformed into a bubble plume, the stratification of the water column, typical for the summer-autumn period, does not limit the plume’s exit to the sea surface, and the velocity of bubble rise allows the gas dissolution process to be disregardded. The analysis was limited to almost calm hydrometeorological conditions. Such conditions are favourable for offshore operations, but unfavourable from the point of view of dispersion of high concentrations of oil product vapours in the near surface layer of the atmosphere. As a result of this work, an analytical dependence for an approximate assessment of the zone of intensive evaporation of gas condensate is proposed.

  10. Fomin A.A., Fomina L.N.
    Effect of buoyancy force on mixed convection of a variable density fluid in a square lid-driven cavity
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 575-595

    The paper considers the problem of stationary mixed convection and heat transfer of a viscous heatconducting fluid in a plane square lid-driven cavity. The hot top cover of the cavity has any temperature $T_\mathrm{H}$ and cold bottom wall has temperature $T_\mathrm{0} (T_\mathrm{H} > T_\mathrm{0})$, whereas in contrast the side walls are insulated. The fact that the fluid density can take arbitrary values depending on the amount of overheating of the cavity cover is a feature of the problem. The mathematical formulation includes the Navier–Stokes equations in the ’velocity–pressure’ variables and the heat balance equation which take into account the incompressibility of the fluid flow and the influence of volumetric buoyancy force. The difference approximation of the original differential equations has been performed by the control volume method. Numerical solutions of the problem have been obtained on the $501 \times 501$ grid for the following values of similarity parameters: Prandtl number Pr = 0.70; Reynolds number Re = 100 and 1000; Richardson number Ri = 0.1, 1, and 10; and the relative cover overheating $(T_\mathrm{H}-T_\mathrm{0})/T_\mathrm{0} = 0, 1, 2, 3$. Detailed flow patterns in the form of streamlines and isotherms of relative overheating of the fluid flow are given in the work. It is shown that the increase in the value of the Richardson number (the increase in the influence of buoyancy force) leads to a fundamental change in the structure of the liquid stream. It is also found out that taking into account the variability of the liquid density leads to weakening of the influence of Ri growth on the transformation of the flow structure. The change in density in a closed volume is the cause of this weakening, since it always leads to the existence of zones with negative buoyancy in the presence of a volumetric force. As a consequence, the competition of positive and negative volumetric forces leads in general to weakening of the buoyancy effect. The behaviors of heat exchange coefficient (Nusselt number) and coefficient of friction along the bottom wall of the cavity depending on the parameters of the problem are also analyzed. It is revealed that the greater the values of the Richardson number are, the greater, ceteris paribus, the influence of density variation on these coefficients is.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"