Результаты поиска по 'обратная задача':
Найдено статей: 63
  1. В работе теоретически и экспериментально рассматривается задача об автоматическом поддержании механического равновесия неоднородно нагретой жидкости в термосифоне с помощью подсистемы, которая подавляет конвекцию посредством малых изменений ориентации системы в пространстве. Обнаружено, что чрезмерное усиление обратной связи возбуждает в системе колебания, причина которых кроется в запаздывании работы контроллера. При наличии шума колебания возникают даже тогда, когда детерминистское описание предсказывает стационарное поведение. Получено хорошее согласие между экспериментом и теорией.

    Bratsun D.A., Zyuzgin A.V.
    Effect of subcritical excitation of oscillations in stochastic systems with time delay. Part II. Control of fluid equilibrium
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 369-389

    The problem of active control of the mechanical equilibrium of an inhomogeneously heated fluid in a thermosyphon is studied theoretically and experimentally. The control is performed by using a feedback subsystem which inhibits convection by changing the orientation of thermosyphon in space. It is shown that excess feedback leads to the excitation of oscillations which are related to a delay in the controller work. In the presense of noise, the oscillations arise even when deterministic description predicts stationary behaviour. The experimental data and theory are in good agreement.

    Views (last year): 1. Citations: 6 (RSCI).
  2. Сафиуллина Л.Ф., Губайдуллин И.М.
    Анализ идентифицируемости математической модели пиролиза пропана
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1045-1057

    Работа посвящена численному моделированию и исследованию кинетической модели пиролиза пропана. Изучение кинетики реакций является необходимой стадией моделирования динамики газового потока в реакторе.

    Кинетическая модель представляет собой нелинейную систему обыкновенных дифференциальных уравнений первого порядка с параметрами, роль которых играют константы скоростей стадий. Математическое моделирование процесса основано на использовании закона сохранения масс. Для решения исходной (прямой) задачи используется неявный метод решения жестких систем обыкновенных дифференциальных уравнений. Модель содержит 60 входных кинетических параметров и 17 выходных параметров, соответствующих веществам реакции, из которых наблюдаемыми являются только 9. В процессе решения задачи по оценке параметров (обратная задача) возникает вопрос неединственности набора параметров, удовлетворяющего имеющимся экспериментальным данным. Поэтому перед решением обратной задачи проводится оценка возможности определения параметров модели — анализ идентифицируемости.

    Для анализа идентифицируемости мы используем ортогональный метод, который хорошо себя зарекомендовал для анализа моделей с большим числом параметров. Основу алгоритма составляет анализ матрицы чувствительно- сти методами дифференциальной и линейной алгебры, показывающей степень зависимости неизвестных параметров моделей от заданных измерений. Анализ чувствительности и идентифицируемости показал, что параметры модели устойчиво определяются по заданному набору экспериментальных данных. В статье представлен список параметров модели от наиболее идентифицируемого до наименее идентифицируемого. Учитывая анализ идентифицируемости математической модели, были введены более жесткие ограничения на поиск слабоидентифицируемых параметров при решении обратной задачи.

    Обратная задача по оценке параметров была решена с использованием генетического алгоритма. В статье представлены найденные оптимальные значения кинетических параметров. Представлено сравнение экспериментальных и расчетных зависимостей концентраций пропана, основных и побочных продуктов реакции от температуры для разных расходов смеси. На основании соответствия полученных результатов физико-химическим законам и экспериментальным данным сделан вывод об адекватности построенной математической модели.

    Safiullina L.F., Gubaydullin I.M.
    Analysis of the identifiability of the mathematical model of propane pyrolysis
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1045-1057

    The article presents the numerical modeling and study of the kinetic model of propane pyrolysis. The study of the reaction kinetics is a necessary stage in modeling the dynamics of the gas flow in the reactor.

    The kinetic model of propane pyrolysis is a nonlinear system of ordinary differential equations of the first order with parameters, the role of which is played by the reaction rate constants. Math modeling of processes is based on the use of the mass conservation law. To solve an initial (forward) problem, implicit methods for solving stiff ordinary differential equation systems are used. The model contains 60 input kinetic parameters and 17 output parameters corresponding to the reaction substances, of which only 9 are observable. In the process of solving the problem of estimating parameters (inverse problem), there is a question of non-uniqueness of the set of parameters that satisfy the experimental data. Therefore, before solving the inverse problem, the possibility of determining the parameters of the model is analyzed (analysis of identifiability).

    To analyze identifiability, we use the orthogonal method, which has proven itself well for analyzing models with a large number of parameters. The algorithm is based on the analysis of the sensitivity matrix by the methods of differential and linear algebra, which shows the degree of dependence of the unknown parameters of the models on the given measurements. The analysis of sensitivity and identifiability showed that the parameters of the model are stably determined from a given set of experimental data. The article presents a list of model parameters from most to least identifiable. Taking into account the analysis of the identifiability of the mathematical model, restrictions were introduced on the search for less identifiable parameters when solving the inverse problem.

    The inverse problem of estimating the parameters was solved using a genetic algorithm. The article presents the found optimal values of the kinetic parameters. A comparison of the experimental and calculated dependences of the concentrations of propane, main and by-products of the reaction on temperature for different flow rates of the mixture is presented. The conclusion about the adequacy of the constructed mathematical model is made on the basis of the correspondence of the results obtained to physicochemical laws and experimental data.

  3. Плохотников К.Э.
    Проблема выбора решений при классическом формате описания молекулярной системы
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1573-1600

    Разработанные автором недавно численные методики расчета молекулярной системы на базе прямого решения уравнения Шрёдингера методом Монте-Карло показали огромную неопределенностьв выборе решений. С одной стороны, оказалось возможным построить множество новых решений, с другой стороны, резко обостриласьпроб лема их связывания с реальностью. В квантовомеханических расчетах ab initio проблема выбора решений стоит не так остро после перехода к классическому формату описания молекулярной системы в терминах потенциальной энергии, метода молекулярной динамики и пр. В данной работе исследуется проблема выбора решений при классическом формате описания молекулярной системы без учета квантовомеханических предпосылок. Как оказалось, проблема выбора решений при классическом формате описания молекулярной системы сводится к конкретной разметке конфигурационного пространства в виде набора стационарных точек и реконструкции соответствующей функции потенциальной энергии. В такой постановке решение проблемы выбора сводится к двум возможным физико-математическим задачам: по заданной функции потенциальной энергии найти все ее стационарные точки (прямая задача проблемы выбора), по заданному набору стационарных точек реконструироватьф ункцию потенциальной энергии (обратная задача проблемы выбора). В работе с помощью вычислительного эксперимента обсуждается прямая задача проблемы выбора на примере описания моноатомного кластера. Численно оцениваются число и форма локально равновесных (седловых) конфигураций бинарного потенциала. Вводится соответствующая мера по различению конфигураций в пространстве. Предлагается формат построения всей цепочки многочастичных вкладов в функцию потенциальной энергии: бинарный, трехчастичный и т.д., многочастичный потенциал максимальной частичности. Обсуждается и иллюстрируется бесконечное количество локально равновесных (седловых) конфигураций для максимально многочастичного потенциала. Предлагается методика вариации числа стационарных точек путем комбинирования многочастичных вкладов в функцию потенциальной энергии. Перечисленные выше результаты работы направлены на то, чтобы уменьшить тот огромный произвол выбора формы потенциала, который имеет место в настоящее время. Уменьшение произвола выбора выражается в том, что имеющиеся знания о вполне конкретном наборе стационарных точек согласуются с соответствующей формой функции потенциальной энергии.

    Plokhotnikov K.E.
    The problem of choosing solutions in the classical format of the description of a molecular system
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1573-1600

    The numerical methods developed by the author recently for calculating the molecular system based on the direct solution of the Schrodinger equation by the Monte Carlo method have shown a huge uncertainty in the choice of solutions. On the one hand, it turned out to be possible to build many new solutions; on the other hand, the problem of their connection with reality has become sharply aggravated. In ab initio quantum mechanical calculations, the problem of choosing solutions is not so acute after the transition to the classical format of describing a molecular system in terms of potential energy, the method of molecular dynamics, etc. In this paper, we investigate the problem of choosing solutions in the classical format of describing a molecular system without taking into account quantum mechanical prerequisites. As it turned out, the problem of choosing solutions in the classical format of describing a molecular system is reduced to a specific marking of the configuration space in the form of a set of stationary points and reconstruction of the corresponding potential energy function. In this formulation, the solution of the choice problem is reduced to two possible physical and mathematical problems: to find all its stationary points for a given potential energy function (the direct problem of the choice problem), to reconstruct the potential energy function for a given set of stationary points (the inverse problem of the choice problem). In this paper, using a computational experiment, the direct problem of the choice problem is discussed using the example of a description of a monoatomic cluster. The number and shape of the locally equilibrium (saddle) configurations of the binary potential are numerically estimated. An appropriate measure is introduced to distinguish configurations in space. The format of constructing the entire chain of multiparticle contributions to the potential energy function is proposed: binary, threeparticle, etc., multiparticle potential of maximum partiality. An infinite number of locally equilibrium (saddle) configurations for the maximum multiparticle potential is discussed and illustrated. A method of variation of the number of stationary points by combining multiparticle contributions to the potential energy function is proposed. The results of the work listed above are aimed at reducing the huge arbitrariness of the choice of the form of potential that is currently taking place. Reducing the arbitrariness of choice is expressed in the fact that the available knowledge about the set of a very specific set of stationary points is consistent with the corresponding form of the potential energy function.

  4. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

    Sofronova E.A., Diveev A.I., Kazaryan D.E., Konstantinov S.V., Daryina A.N., Seliverstov Y.A., Baskin L.A.
    Utilizing multi-source real data for traffic flow optimization in CTraf
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 147-159

    The problem of optimal control of traffic flow in an urban road network is considered. The control is carried out by varying the duration of the working phases of traffic lights at controlled intersections. A description of the control system developed is given. The control system enables the use of three types of control: open-loop, feedback and manual. In feedback control, road infrastructure detectors, video cameras, inductive loop and radar detectors are used to determine the quantitative characteristics of current traffic flow state. The quantitative characteristics of the traffic flows are fed into a mathematical model of the traffic flow, implemented in the computer environment of an automatic traffic flow control system, in order to determine the moments for switching the working phases of the traffic lights. The model is a system of finite-difference recurrent equations and describes the change in traffic flow on each road section at each time step, based on retrived data on traffic flow characteristics in the network, capacity of maneuvers and flow distribution through alternative maneuvers at intersections. The model has scaling and aggregation properties. The structure of the model depends on the structure of the graph of the controlled road network. The number of nodes in the graph is equal to the number of road sections in the considered network. The simulation of traffic flow changes in real time makes it possible to optimally determine the duration of traffic light operating phases and to provide traffic flow control with feedback based on its current state. The system of automatic collection and processing of input data for the model is presented. In order to model the states of traffic flow in the network and to solve the problem of optimal traffic flow control, the CTraf software package has been developed, a brief description of which is given in the paper. An example of the solution of the optimal control problem of traffic flows on the basis of real data in the road network of Moscow is given.

  5. Акопов А.С., Бекларян Л.А., Бекларян А.Л., Сагателян А.К.
    Укрупненная модель эколого-экономической системы на примере Республики Армения
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631

    В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.

    Akopov A.S., Beklaryan L.A., Beklaryan A.L., Saghatelyan A.K.
    The integrated model of eco-economic system on the example of the Republic of Armenia
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631

    This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.

    Views (last year): 14. Citations: 7 (RSCI).
  6. Стонякин Ф.С., Савчyк О.С., Баран И.В., Алкуса М.С., Титов А.А.
    Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432

    Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.

    Stonyakin F.S., Savchuk O.S., Baran I.V., Alkousa M.S., Titov A.A.
    Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432

    This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.

  7. Плетнев Н.В., Двуреченский П.Е., Гасников А.В.
    Применение градиентных методов оптимизации для решения задачи Коши для уравнения Гельмгольца
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 417-444

    Статья посвящена изучению применения методов выпуклой оптимизации для решения задачи Коши для уравнения Гельмгольца, которая является некорректной, поскольку уравнение относится к эллиптическому типу. Задача Коши формулируется как обратная задача и сводится к задаче выпуклой оптимизации в гильбертовом пространстве. Оптимизируемый функционал и его градиент вычисляются с помощью решения краевых задач, которые, в свою очередь, корректны и могут быть приближенно решены стандартными численными методами, такими как конечно-разностные схемы и разложения в ряды Фурье. Экспериментально исследуются сходимость применяемого быстрого градиентного метода и качество получаемого таким образом решения. Эксперимент показывает, что ускоренный градиентный метод — метод подобных треугольников — сходится быстрее, чем неускоренный метод. Сформулированы и доказаны теоремы о вычислительной сложности полученных алгоритмов. Установлено, что разложения в ряды Фурье превосходят конечно-разностные схемы по скорости вычислений и улучшают качество получаемого решения. Сделана попытка использовать рестарты метода подобных треугольников после уменьшения невязки функционала вдвое. В этом случае сходимость не улучшается, что подтверждает отсутствие сильной выпуклости. Эксперименты показывают, что неточность вычислений более адекватно описывается аддитивной концепцией шума в оракуле первого порядка. Этот фактор ограничивает достижимое качество решения, но ошибка не накапливается. Полученные результаты показывают, что использование ускоренных градиентных методов оптимизации позволяет эффективно решать обратные задачи.

    Pletnev N.V., Dvurechensky P.E., Gasnikov A.V.
    Application of gradient optimization methods to solve the Cauchy problem for the Helmholtz equation
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 417-444

    The article is devoted to studying the application of convex optimization methods to solve the Cauchy problem for the Helmholtz equation, which is ill-posed since the equation belongs to the elliptic type. The Cauchy problem is formulated as an inverse problem and is reduced to a convex optimization problem in a Hilbert space. The functional to be optimized and its gradient are calculated using the solution of boundary value problems, which, in turn, are well-posed and can be approximately solved by standard numerical methods, such as finite-difference schemes and Fourier series expansions. The convergence of the applied fast gradient method and the quality of the solution obtained in this way are experimentally investigated. The experiment shows that the accelerated gradient method — the Similar Triangle Method — converges faster than the non-accelerated method. Theorems on the computational complexity of the resulting algorithms are formulated and proved. It is found that Fourier’s series expansions are better than finite-difference schemes in terms of the speed of calculations and improve the quality of the solution obtained. An attempt was made to use restarts of the Similar Triangle Method after halving the residual of the functional. In this case, the convergence does not improve, which confirms the absence of strong convexity. The experiments show that the inaccuracy of the calculations is more adequately described by the additive concept of the noise in the first-order oracle. This factor limits the achievable quality of the solution, but the error does not accumulate. According to the results obtained, the use of accelerated gradient optimization methods can be the way to solve inverse problems effectively.

  8. Сокрытие информации в цифровых изображениях является перспективным направлением кибербезопасности. Методы стеганографии обеспечивают незаметную передачу данных по открытому каналу связи втайне от злоумышленника. Эффективность встраивания информации зависит от того, насколько незаметным и робастным является скрытое вложение, а также от емкости встраивания. Однако показатели качества встраивания являются взаимно обратными и улучшение значения одного из них обычно приводит к ухудшению остальных. Баланс между ними может быть достигнут с помощью применения метаэвристической оптимизации. Метаэвристики позволяют находить оптимальные или близкие к ним решения для многих задач, в том числе трудно формализуемых, моделируя разные природные процессы, например эволюцию видов или поведение животных. В этой статье предлагается новый подход к сокрытию данных в гибридном пространственно-частотном домене цифровых изображений на основе метаэвристической оптимизации. В качестве операции встраивания выбрано изменение блока пикселей изображения в соответствии с некоторой матрицей изменений. Матрица изменений выбирается адаптивно для каждого блока с помощью алгоритмов метаэвристической оптимизации. В работе сравнивается эффективность трех метаэвристик, таких как генетический алгоритм (ГА), оптимизация роя частиц (ОРЧ) и дифференциальная эволюция (ДЭ), для поиска лучшей матрицы изменений. Результаты экспериментов показывают, что новый подход обеспечивает высокую незаметность встраивания, высокую емкость и безошибочное извлечение встроенной информации. При этом хранение и передача матриц изменений для каждого блока не требуются для извлечения данных, что уменьшает вероятность обнаружения скрытого вложения злоумышленником. Метаэвристики обеспечили прирост показателей незаметности и емкости по сравнению с предшествующим алгоритмом встраивания данных в коэффициенты дискретного косинусного преобразования по методу QIM [Evsutin, Melman, Meshcheryakov, 2021] соответственно на 26,02% и 30,18% для ГА, на 26,01% и 19,39% для ОРЧ, на 27,30% и 28,73% для ДЭ.

    Melman A.S., Evsutin O.O.
    Efficient and error-free information hiding in the hybrid domain of digital images using metaheuristic optimization
    Computer Research and Modeling, 2023, v. 15, no. 1, pp. 197-210

    Data hiding in digital images is a promising direction of cybersecurity. Digital steganography methods provide imperceptible transmission of secret data over an open communication channel. The information embedding efficiency depends on the embedding imperceptibility, capacity, and robustness. These quality criteria are mutually inverse, and the improvement of one indicator usually leads to the deterioration of the others. A balance between them can be achieved using metaheuristic optimization. Metaheuristics are a class of optimization algorithms that find an optimal, or close to an optimal solution for a variety of problems, including those that are difficult to formalize, by simulating various natural processes, for example, the evolution of species or the behavior of animals. In this study, we propose an approach to data hiding in the hybrid spatial-frequency domain of digital images based on metaheuristic optimization. Changing a block of image pixels according to some change matrix is considered as an embedding operation. We select the change matrix adaptively for each block using metaheuristic optimization algorithms. In this study, we compare the performance of three metaheuristics such as genetic algorithm, particle swarm optimization, and differential evolution to find the best change matrix. Experimental results showed that the proposed approach provides high imperceptibility of embedding, high capacity, and error-free extraction of embedded information. At the same time, storage of change matrices for each block is not required for further data extraction. This improves user experience and reduces the chance of an attacker discovering the steganographic attachment. Metaheuristics provided an increase in imperceptibility indicator, estimated by the PSNR metric, and the capacity of the previous algorithm for embedding information into the coefficients of the discrete cosine transform using the QIM method [Evsutin, Melman, Meshcheryakov, 2021] by 26.02% and 30.18%, respectively, for the genetic algorithm, 26.01% and 19.39% for particle swarm optimization, 27.30% and 28.73% for differential evolution.

  9. Чертов О.Г., Надпорожская М.А.
    Модели динамики органического вещества почв: проблемы и перспективы
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 391-399

    Почва как сложная полифункциональная открытая система является одним из наиболее проблемных объектов для моделирования. Несмотря на значительные успехи в моделировании почвенной системы, существующие модели не отражают все факторы и процессы минерализации и гумификации органического вещества в почве. С учетом опыта создания и широкого применения системы моделей ROMUL и EFIMOD определены проблемы и точки роста в области моделирования динамики органического вещества почв и элементов-биофилов. В работе рассмотрены вопросы дальнейшего теоретического обоснования, улучшения структуры моделей, подготовки и неопределенности исходных данных, включения всей почвенной биоты (микроорганизмов, микро- и мезофауны) как факторов гумусообразования, влияния минералогического состава почв на динамику углерода и азота, гидротермического режима и формирования органического вещества по профилю почвы, вертикальной и горизонтальной миграции органического вещества. Для успешного решения этих задач необходима эффективная обратная связь между разработчиками моделей и экспериментаторами.

    Chertov O.G., Nadporozhskaya M.A.
    Models of soil organic matter dynamics: problems and perspectives
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 391-399

    Soil as a complex multifunctional open system is one of the most difficult object for modeling. In spite of serious achievements in the soil system modeling, existed models do not reflect all aspects and processes of soil organic matter mineralization and humification. The problems and “hot spots” in the modeling of the dynamics of soil organic matter and biophylous elements were identified on a base of creation and wide implementation of ROMUL and EFIMOD models. The following aspects are discussed: further theoretical background; improving the structure of models; preparation and uncertainty of the initial data; inclusion of all soil biota (microorganisms, micro- and meso-fauna) as factors of humification; impact of soil mineralogy on C and N dynamics; hydro-thermal regime and organic matter distribution in whole soil profile; vertical and horizontal migration of soil organic matter. An effective feedback from modellers to experimentalists is necessary to solve the listed problems.

    Views (last year): 2. Citations: 3 (RSCI).
  10. Голубев В.И., Шевченко А.В., Петров И.Б.
    Повышение порядка точности сеточно-характеристического метода для задач двумерной линейной упругости с помощью схем операторного расщепления
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 899-910

    Сеточно-характеристический метод успешно применяется для решения различных гиперболических систем уравнений в частных производных (например, уравнения переноса, акустики, линейной упругости). Он позволяет корректно строить алгоритмы на контактных границах и границах области интегрирования, в определенной степени учитывать физику задачи (распространение разрывов вдоль характеристических поверхностей), обладает важнымдля рассматриваемых задач свойством монотонности. В случае двумерных и трехмерных задач используется процедура расщепления по пространственным направлениям, позволяющая решить исходную систему путем последовательного решения нескольких одномерных систем. На настоящий момент во множестве работ используются схемы до третьего порядка точности при решении одномерных задач и простейшие схемы расщепления, которые в общем случае не позволяют получить порядок точности по времени выше второго. Значительное развитие получило направление операторного расщепления, доказана возможность повышения порядка сходимости многомерных схем. Его особенностью является необходимость выполнения шага в обратном направлении по времени, что порождает сложности, например, для параболических задач.

    В настоящей работе схемы расщепления 3-го и 4-го порядка были применены непосредственно к решению двумерной гиперболической системы уравнений в частных производных линейной теории упругости. Это позволило повысить итоговый порядок сходимости расчетного алгоритма. В работе эмпирически оценена сходимость по нормам $L_1$ и $L_\infty$ с использованиемана литических решений определяющей системы достаточной степени гладкости. Для получения объективных результатов рассмотрены случаи продольных и поперечных плоских волн, распространяющихся как вдоль диагонали расчетной ячейки, так и не вдоль нее. Проведенные численные эксперименты подтверждают повышение точности метода и демонстрируют теоретически ожидаемый порядок сходимости. При этом увеличивается в 3 и в 4 раза время моделирования (для схем 3-го и 4-го порядка соответственно), но не возрастает потребление оперативной памяти. Предложенное усовершенствование вычислительного алгоритма сохраняет простоту его параллельной реализации на основе пространственной декомпозиции расчетной сетки.

    Golubev V.I., Shevchenko A.V., Petrov I.B.
    Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 899-910

    The grid-characteristic method is successfully used for solving hyperbolic systems of partial differential equations (for example, transport / acoustic / elastic equations). It allows to construct correctly algorithms on contact boundaries and boundaries of the integration domain, to a certain extent to take into account the physics of the problem (propagation of discontinuities along characteristic curves), and has the property of monotonicity, which is important for considered problems. In the cases of two-dimensional and three-dimensional problems the method makes use of a coordinate splitting technique, which enables us to solve the original equations by solving several one-dimensional ones consecutively. It is common to use up to 3-rd order one-dimensional schemes with simple splitting techniques which do not allow for the convergence order to be higher than two (with respect to time). Significant achievements in the operator splitting theory were done, the existence of higher-order schemes was proved. Its peculiarity is the need to perform a step in the opposite direction in time, which gives rise to difficulties, for example, for parabolic problems.

    In this work coordinate splitting of the 3-rd and 4-th order were used for the two-dimensional hyperbolic problem of the linear elasticity. This made it possible to increase the final convergence order of the computational algorithm. The paper empirically estimates the convergence in L1 and L∞ norms using analytical solutions of the system with the sufficient degree of smoothness. To obtain objective results, we considered the cases of longitudinal and transverse plane waves propagating both along the diagonal of the computational cell and not along it. Numerical experiments demonstrated the improved accuracy and convergence order of constructed schemes. These improvements are achieved with the cost of three- or fourfold increase of the computational time (for the 3-rd and 4-th order respectively) and no additional memory requirements. The proposed improvement of the computational algorithm preserves the simplicity of its parallel implementation based on the spatial decomposition of the computational grid.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"