Результаты поиска по 'assessment':
Найдено статей: 84
  1. Grachev V.A., Nayshtut Yu.S.
    Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205

    Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.

  2. Subbotina A.Y., Khokhlov N.I.
    MPI implementations of Conway’s Game of Life and Kohomoto-Oono cellular automata
    Computer Research and Modeling, 2010, v. 2, no. 3, pp. 319-322

    Results obtained during practical training session on MPI during high perfomance computing summer school MIPT-2010 are discussed. MPI technology were one of technologies proposed to participants for realization of project. 3D version of Conway’s Game of Life was proposed as a project. Algorithms used in the development, theoretical and practical assessment of their scalability is analyzed.

    Views (last year): 11.
  3. Gubanov S.M., Durnovtsev M.I., Kartavih A.A., Krainov A.Y.
    Numerical simulation of air cooling the tank to desublimate components of the gas mixture
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 521-529

    For the production of purified final product in chemical engineering used the process of desublimation. For this purpose, the tank is cooled by liquid nitrogen or cold air. The mixture of gases flows inside the tank and is cooled to the condensation or desublimation temperature some components of the gas mixture. The condensed components are deposited on the walls of the tank. The article presents a mathematical model to calculate the cooling air tanks for desublimation of vapours. A mathematical model based on equations of gas dynamics and describes the movement of cooled air in the duct and the heat exchanger with heat exchange and friction. The heat of the phase transition is taken into account in the boundary condition for the heat equation by setting the heat flux. Heat transfer in the walls of the pipe and in the tank wall is described by the nonstationary heat conduction equations. The solution of the system of equations is carried out numerically. The equations of gas dynamics are solved by the method of S. K. Godunov. The heat equation are solved by an implicit finite difference scheme. The article presents the results of calculations of the cooling of two successively installed tanks. The initial temperature of the tanks is equal to 298 K. Cold air flows through the tubing, through the heat exchanger of the first tank, then through conduit to the heat exchanger second tank. During the 20 minutes of tank cool down to operating temperature. The temperature of the walls of the tanks differs from the air temperature not more than 1 degree. The flow of cooling air allows to maintain constant temperature of the walls of the tank in the process of desublimation components from a gas mixture. The results of analytical evaluation of the time of cooling tank and temperature difference between the tank walls and air with the vapor desublimation. Analytical assessment is based on determining the time of heat relaxation temperature of the tank walls. The results of evaluations are satisfactorily coincide with the results of calculations by the present model. The proposed approach allows calculating the cooling tanks with a flow of cold air supplied via the pipeline system.

    Views (last year): 3. Citations: 1 (RSCI).
  4. Abakumov A.I., Izrailsky Y.G.
    Models of phytoplankton distribution over chlorophyll in various habitat conditions. Estimation of aquatic ecosystem bioproductivity
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1177-1190

    A model of the phytoplankton abundance dynamics depending on changes in the content of chlorophyll in phytoplankton under the influence of changing environmental conditions is proposed. The model takes into account the dependence of biomass growth on environmental conditions, as well as on photosynthetic chlorophyll activity. The light and dark stages of photosynthesis have been identified. The processes of chlorophyll consumption during photosynthesis in the light and the growth of chlorophyll mass together with phytoplankton biomass are described. The model takes into account environmental conditions such as mineral nutrients, illumination and water temperature. The model is spatially distributed, the spatial variable corresponds to mass fraction of chlorophyll in phytoplankton. Thereby possible spreads of the chlorophyll contents in phytoplankton are taken into consideration. The model calculates the density distribution of phytoplankton by the proportion of chlorophyll in it. In addition, the rate of production of new phytoplankton biomass is calculated. In parallel, point analogs of the distributed model are considered. The diurnal and seasonal (during the year) dynamics of phytoplankton distribution by chlorophyll fraction are demonstrated. The characteristics of the rate of primary production in daily or seasonally changing environmental conditions are indicated. Model characteristics of the dynamics of phytoplankton biomass growth show that in the light this growth is about twice as large as in the dark. It shows, that illumination significantly affects the rate of production. Seasonal dynamics demonstrates an accelerated growth of biomass in spring and autumn. The spring maximum is associated with warming under the conditions of biogenic substances accumulated in winter, and the autumn, slightly smaller maximum, with the accumulation of nutrients during the summer decline in phytoplankton biomass. And the biomass in summer decreases, again due to a deficiency of nutrients. Thus, in the presence of light, mineral nutrition plays the main role in phytoplankton dynamics.

    In general, the model demonstrates the dynamics of phytoplankton biomass, qualitatively similar to classical concepts, under daily and seasonal changes in the environment. The model seems to be suitable for assessing the bioproductivity of aquatic ecosystems. It can be supplemented with equations and terms of equations for a more detailed description of complex processes of photosynthesis. The introduction of variables in the physical habitat space and the conjunction of the model with satellite information on the surface of the reservoir leads to model estimates of the bioproductivity of vast marine areas. Introduction of physical space variables habitat and the interface of the model with satellite information about the surface of the basin leads to model estimates of the bioproductivity of vast marine areas.

  5. Mezentsev Y.A., Razumnikova O.M., Estraykh I.V., Tarasova I.V., Trubnikova O.A.
    Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693

    The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.

    The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.

    In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.

    To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.

    The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.

  6. Zhmurov A.A., Barsegov V.A., Trifonov S.V., Kholodov Y.A., Kholodov A.S.
    Efficient Pseudorandom number generators for biomolecular simulations on graphics processors
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 287-308

    Langevin Dynamics, Monte Carlo, and all-atom Molecular Dynamics simulations in implicit solvent require a reliable source of pseudorandom numbers generated at each step of calculation. We present the two main approaches for implementation of pseudorandom number generators on a GPU. In the first approach, inherent in CPU-based calculations, one PRNG produces a stream of pseudorandom numbers in each thread of execution, whereas the second approach builds on the ability of different threads to communicate, thus, sharing random seeds across the entire device. We exemplify the use of these approaches through the development of Ran2, Hybrid Taus, and Lagged Fibonacci algorithms. As an application-based test of randomness, we carry out LD simulations of N independent harmonic oscillators coupled to a stochastic thermostat. This model allows us to assess statistical quality of pseudorandom numbers. We also profile performance of these generators in terms of the computational time, memory usage, and the speedup factor (CPU/GPU time).

    Views (last year): 11. Citations: 2 (RSCI).
  7. Nikitin I.S., Filimonov A.V., Yakushev V.L.
    Propagation of Rayleigh waves at oblique impact of the meteorite about the earth’s surface and their effects on buildings and structures
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 981-992

    In this paper the dynamic elasticity problem of the simultaneous normal and tangential impact on the half-space is solved. This problem simulates the oblique incidence of meteorite on the Earth’s surface. The surface Rayleigh wave is investigated. The resulting solution is used as an external effect on the high-rise building, located at some distance from the spot of falling for the safety and stability assessment of its structure. Numerical experiments were made based on the finite element software package STARK ES. Upper floors amplitudes of the selected object were calculated under such dynamic effects. Also a systematic comparison with the results at the foundation vibrations, relevant to  standard a 8-point earthquake accelerograms, was made.

    Views (last year): 3. Citations: 2 (RSCI).
  8. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  9. Potapov I.I., Reshetnikova O.V.
    The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 979-992

    The two significant geometric parameters are proposed that affect the physical quantities interpolation in the smoothed particle hydrodynamics method (SPH). They are: the smoothing coefficient which the particle size and the smoothing radius are connecting and the volume coefficient which determine correctly the particle mass for a given particles distribution in the medium.

    In paper proposes a technique for these parameters influence assessing on the SPH method interpolations accuracy when the hydrostatic problem solving. The analytical functions of the relative error for the density and pressure gradient in the medium are introduced for the accuracy estimate. The relative error functions are dependent on the smoothing factor and the volume factor. Designating a specific interpolation form in SPH method allows the differential form of the relative error functions to the algebraic polynomial form converting. The root of this polynomial gives the smoothing coefficient values that provide the minimum interpolation error for an assigned volume coefficient.

    In this work, the derivation and analysis of density and pressure gradient relative errors functions on a sample of popular nuclei with different smoothing radius was carried out. There is no common the smoothing coefficient value for all the considered kernels that provides the minimum error for both SPH interpolations. The nuclei representatives with different smoothing radius are identified which make it possible the smallest errors of SPH interpolations to provide when the hydrostatic problem solving. As well, certain kernels with different smoothing radius was determined which correct interpolation do not allow provide when the hydrostatic problem solving by the SPH method.

  10. Koubassova N.A., Tsaturyan A.K.
    Molecular dynamics assessment of the mechanical properties of fibrillar actin
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1081-1092

    Actin is a conserved structural protein that is expressed in all eukaryotic cells. When polymerized, it forms long filaments of fibrillar actin, or F-actin, which are involved in the formation of the cytoskeleton, in muscle contraction and its regulation, and in many other processes. The dynamic and mechanical properties of actin are important for interaction with other proteins and the realization of its numerous functions in the cell. We performed 204.8 ns long molecular dynamics (MD) simulations of an actin filament segment consisting of 24 monomers in the absence and the presence of MgADP at 300 K in the presence of a solvent and at physiological ionic strength using the AMBER99SBILDN and CHARMM36 force fields in the GROMACS software environment, using modern structural models as the initial structure obtained by high-resolution cryoelectron microscopy. MD calculations have shown that the stationary regime of fluctuations in the structure of the F-actin long segment is developed 80–100 ns after the start of the MD trajectory. Based on the results of MD calculations, the main parameters of the actin helix and its bending, longitudinal, and torsional stiffness were estimated using a section of the calculation model that is far enough away from its ends. The estimated subunit axial (2.72–2.75 nm) and angular (165–168) translation of the F-actin helix, its bending (2.8–4.7 · 10−26 N·m2), longitudinal (36–47·10−9 N), and torsional (2.6–3.1·10−26 N·m2) stiffness are in good agreement with the results of the most reliable experiments. The results of MD calculations have shown that modern structural models of F-actin make it possible to accurately describe its dynamics and mechanical properties, provided that computational models contain a sufficiently large number of monomers, modern force fields, and relatively long MD trajectories are used. The inclusion of actin partner proteins, in particular, tropomyosin and troponin, in the MD model can help to understand the molecular mechanisms of such important processes as the regulation of muscle contraction.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"