Результаты поиска по 'discrete models':
Найдено статей: 72
  1. Sukhinov A.I., Chistyakov A.E., Semenyakina A.A., Nikitina A.V.
    Numerical modeling of ecologic situation of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 151-168

    The article covered results of three-dimensional modeling of ecologic situation of shallow water on the example of the Azov Sea with using schemes of increased order of accuracy on multiprocessor computer system of Southern Federal University. Discrete analogs of convective and diffusive transfer operators of the fourth order of accuracy in the case of partial occupancy of cells were constructed and studied. The developed scheme of the high (fourth) order of accuracy were used for solving problems of aquatic ecology and modeling spatial distribution of polluting nutrients, which caused growth of phytoplankton, many species of which are toxic and harmful. The use of schemes of the high order of accuracy are improved the quality of input data and decreased the error in solutions of model tasks of aquatic ecology. Numerical experiments were conducted for the problem of transportation of substances on the basis of the schemes of the second and fourth orders of accuracy. They’re showed that the accuracy was increased in 48.7 times for diffusion-convection problem. The mathematical algorithm was proposed and numerically implemented, which designed to restore the bottom topography of shallow water on the basis of hydrographic data (water depth at individual points or contour level). The map of bottom relief of the Azov Sea was generated with using this algorithm. It’s used to build fields of currents calculated on the basis of hydrodynamic model. The fields of water flow currents were used as input data of the aquatic ecology models. The library of double-layered iterative methods was developed for solving of nine-diagonal difference equations. It occurs in discretization of model tasks of challenges of pollutants concentration, plankton and fish on multiprocessor computer system. It improved the precision of the calculated data and gave the possibility to obtain operational forecasts of changes in ecologic situation of shallow water in short time intervals.

    Views (last year): 4. Citations: 31 (RSCI).
  2. Silaeva V.A., Silaeva M.V., Silaev A.M.
    Estimation of models parameters for time series with Markov switching regimes
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918

    The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.

    Views (last year): 36.
  3. Neverova G.P., Zhdanova O.L., Kolbina E.A., Abakumov A.I.
    A plankton community: a zooplankton effect in phytoplankton dynamics
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 751-768

    The paper uses methods of mathematical modeling to estimate a zooplankton influence on the dynamics of phytoplankton abundance. We propose a three-component model of the “phytoplankton–zooplankton” community with discrete time, considering a heterogeneity of zooplankton according to the developmental stage and type of feeding; the model takes into account cannibalism in zooplankton community, during which mature individuals of some of its species consume juvenile ones. Survival rates at the early stages of zooplankton life cycle depend explicitly on the interaction between zooplankton and phytoplankton. Loss of phytoplankton biomass because of zooplankton consumption is explicitly considered. We use the Holling functional response of type II to describe saturation during biomass consumption. The dynamics of the phytoplankton community is represented by the Ricker model, which allows to take into account the restriction of phytoplankton biomass growth by the availability of external resources (mineral nutrition, oxygen, light, etc.) implicitly.

    The study analyzed scenarios of the transition from stationary dynamics to fluctuations in the size of phytoand zooplankton for various values of intrapopulation parameters determining the nature of the dynamics of the species constituting the community, and the parameters of their interaction. The focus is on exploring the complex modes of community dynamics. In the framework of the model used for describing dynamics of phytoplankton in the absence of interspecific interaction, phytoplankton dynamics undergoes a series of perioddoubling bifurcations. At the same time, with zooplankton appearance, the cascade of period-doubling bifurcations in phytoplankton and the community as a whole is realized earlier (at lower reproduction rates of phytoplankton cells) than in the case when phytoplankton develops in isolation. Furthermore, the variation in the cannibalism level in zooplankton can significantly change both the existing dynamics in the community and its bifurcation; e.g., with a certain structure of zooplankton food relationships the realization of Neimark–Sacker bifurcation scenario in the community is possible. Considering the cannibalism level in zooplankton can change due to the natural maturation processes and achievement of the carnivorous stage by some individuals, one can expect pronounced changes in the dynamic mode of the community, i.e. abrupt transitions from regular to quasiperiodic dynamics (according to Neimark–Sacker scenario) and further cycles with a short period (the implementation of period halving bifurcation).

    Views (last year): 3.
  4. Pekhterev A.A., Domaschenko D.V., Guseva I.A.
    Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978

    The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.

  5. Zakharov A.P., Bratsun D.A.
    Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 255-270

    In the paper three characteristic scales of a biological system are proposed: microscopic (gene's size), mesoscopic (cell’s size) and macroscopic level (organism’s size). For each case the approach to modeling of circadian rhythms is discussed on the base of a time-delay model. At gene’s scale the stochastic description has been used. The robustness of rhythms mechanism to the fluctuations has been demonstrated. At the mesoscopic scale we propose the deterministic description within the spatially extended model. It was found the effect of collective synchronization of rhythms in cells. Macroscopic effects have been studied within the discrete model describing the collective behaviour of large amount of cells. The problem of cross-linking of results obtained at different scales is discussed. The comparison with experimental data is given.

    Views (last year): 1. Citations: 8 (RSCI).
  6. Krivovichev G.V.
    Difference splitting schemes for the system of one-dimensional equations of hemodynamics
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 459-488

    The work is devoted to the construction and analysis of difference schemes for a system of hemodynamic equations obtained by averaging the hydrodynamic equations of a viscous incompressible fluid over the vessel cross-section. Models of blood as an ideal and as a viscous Newtonian fluid are considered. Difference schemes that approximate equations with second order on the spatial variable are proposed. The computational algorithms of the constructed schemes are based on the method of splitting on physical processes. According to this approach, at one time step, the model equations are considered separately and sequentially. The practical implementation of the proposed schemes at each time step leads to a sequential solution of two linear systems with tridiagonal matrices. It is demonstrated that the schemes are $\rho$-stable under minor restrictions on the time step in the case of sufficiently smooth solutions.

    For the problem with a known analytical solution, it is demonstrated that the numerical solution has a second order convergence in a wide range of spatial grid step. The proposed schemes are compared with well-known explicit schemes, such as the Lax – Wendroff, Lax – Friedrichs and McCormack schemes in computational experiments on modeling blood flow in model vascular systems. It is demonstrated that the results obtained using the proposed schemes are close to the results obtained using other computational schemes, including schemes constructed by other approaches to spatial discretization. It is demonstrated that in the case of different spatial grids, the time of computation for the proposed schemes is significantly less than in the case of explicit schemes, despite the need to solve systems of linear equations at each step. The disadvantages of the schemes are the limitation on the time step in the case of discontinuous or strongly changing solutions and the need to use extrapolation of values at the boundary points of the vessels. In this regard, problems on the adaptation of splitting schemes for problems with discontinuous solutions and in cases of special types of conditions at the vessels ends are perspective for further research.

  7. Skvortsova D.A., Chuvilgin E.L., Smirnov A.V., Romanov N.O.
    Development of a hybrid simulation model of the assembly shop
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379

    In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.

  8. Vigont V.A., Mironycheva O.S., Topaj A.G.
    Modification of Chanter–Thornley mushroom growth model and its analysis by means of multiapproach simulation
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 375-385

    Classical Chanter–Thornley model of mushroom growth has been modified and implemented in AnyLogic simulation environment by means of system dynamics, discrete-event and agent-based approaches. A numerical case study of the model is presented and the problem of optimum age at harvest, providing the maximum integral yield for all fruiting “waves” is solved.

    Views (last year): 3. Citations: 3 (RSCI).
  9. Shumov V.V.
    Mathematical models of combat and military operations
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 907-920

    Modeling the fight against terrorist, pirate and robbery acts at sea is an urgent scientific task due to the prevalence of force acts and the insufficient number of works on this issue. The actions of pirates and terrorists are diverse. Using a base ship, they can attack ships up to 450–500 miles from the coast. Having chosen the target, they pursue it and use the weapons to board the ship. Actions to free a ship captured by pirates or terrorists include: blocking the ship, predicting where pirates might be on the ship, penetrating (from board to board, by air or from under water) and cleaning up the ship’s premises. An analysis of the special literature on the actions of pirates and terrorists showed that the act of force (and actions to neutralize it) consists of two stages: firstly, blocking the vessel, which consists in forcing it to stop, and secondly, neutralizing the team (terrorist groups, pirates), including penetration of a ship (ship) and its cleaning. The stages of the cycle are matched by indicators — the probability of blocking and the probability of neutralization. The variables of the act of force model are the number of ships (ships, boats) of the attackers and defenders, as well as the strength of the capture group of the attackers and the crew of the ship - the victim of the attack. Model parameters (indicators of naval and combat superiority) were estimated using the maximum likelihood method using an international database of incidents at sea. The values of these parameters are 7.6–8.5. Such high values of superiority parameters reflect the parties' ability to act in force acts. An analytical method for calculating excellence parameters is proposed and statistically substantiated. The following indicators are taken into account in the model: the ability of the parties to detect the enemy, the speed and maneuverability characteristics of the vessels, the height of the vessel and the characteristics of the boarding equipment, the characteristics of weapons and protective equipment, etc. Using the Becker model and the theory of discrete choice, the probability of failure of the force act is estimated. The significance of the obtained models for combating acts of force in the sea space lies in the possibility of quantitative substantiation of measures to protect the ship from pirate and terrorist attacks and deterrence measures aimed at preventing attacks (the presence of armed guards on board the ship, assistance from warships and helicopters).

  10. Poddubny V.V., Romanovich O.V.
    Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450

    The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.

    Views (last year): 1. Citations: 3 (RSCI).
Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"