Результаты поиска по 'equations':
Найдено статей: 373
  1. We study the class of first order differential equations in partial derivatives of the Clairaut-type, which are a multidimensional generalization of the ordinary differential Clairaut equation to the case when the unknown function depends on many variables. It is known that the general solution of the Clairaut-type partial differential equation is a family of integral (hyper-) planes. In addition to the general solution, there can be particular solutions, and in some cases a special (singular) solution can be found.

    The aim of the paper is to find a singular solution of the Clairaut-type equation in partial derivatives of the first order with a special right-hand side. In the paper, we formulate a criterion for the existence of a special solution of a differential equation of Clairaut type in partial derivatives for the case, when the function of the derivatives is a function of a linear combination of partial derivatives of unknown function. We obtain the singular solution for this type of differential equations with trigonometric functions of a linear combination of $n$-independent variables with arbitrary coefficients. It is shown that the task of finding a special solution is reduced to solving a system of transcendental equations containing initial trigonometric functions. The article describes the procedure for evaluation of a singular solution of Clairaut-type equation; the main idea is to find not partial derivatives of the unknown function, as functions of independent variables, but linear combinations of partial derivatives with some coefficients. This method can be used to find special solutions of Clairaut-type equations, for which this structure is preserved.

    The work is organized as follows. The Introduction contains a brief review of some modern results related to the topic of the study of Clairaut-type equations. The Second part is the main one and it includes a formulation of the main task of the work and describes a method of evaluation of singular solutions for the Clairaut-type equations in partial derivatives with a special right-hand side. The main result of the work is to find singular solutions of the Clairaut-type equations containing trigonometric functions. These solutions are given in the main part of the work as an illustrating example for the method described earlier. In Conclusion, we formulate the results of the work and describe future directions of the research.

  2. We present the iterative algorithm that solves numerically both Urysohn type Fredholm and Volterra nonlinear one-dimensional nonsingular integral equations of the second kind to a specified, modest user-defined accuracy. The algorithm is based on descending recursive sequence of quadratures. Convergence of numerical scheme is guaranteed by fixed-point theorems. Picard’s method of integrating successive approximations is of great importance for the existence theory of integral equations but surprisingly very little appears on numerical algorithms for its direct implementation in the literature. We show that successive approximations method can be readily employed in numerical solution of integral equations. By that the quadrature algorithm is thoroughly designed. It is based on the explicit form of fifth-order embedded Runge–Kutta rule with adaptive step-size self-control. Since local error estimates may be cheaply obtained, continuous monitoring of the quadrature makes it possible to create very accurate automatic numerical schemes and to reduce considerably the main drawback of Picard iterations namely the extremely large amount of computations with increasing recursion depth. Our algorithm is organized so that as compared to most approaches the nonlinearity of integral equations does not induce any additional computational difficulties, it is very simple to apply and to make a program realization. Our algorithm exhibits some features of universality. First, it should be stressed that the method is as easy to apply to nonlinear as to linear equations of both Fredholm and Volterra kind. Second, the algorithm is equipped by stopping rules by which the calculations may to considerable extent be controlled automatically. A compact C++-code of described algorithm is presented. Our program realization is self-consistent: it demands no preliminary calculations, no external libraries and no additional memory is needed. Numerical examples are provided to show applicability, efficiency, robustness and accuracy of our approach.

  3. Bragin M.D., Rogov B.V.
    Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 487-504

    This work is dedicated to application of bicompact schemes to numerical solution of evolutionary hyperbolic equations. The main advantage of this class of schemes lies in combination of two beneficial properties: the first one is spatial approximation of high even order on a stencil that always occupies only one mesh cell; the second one is spectral resolution which is better in comparison to classic compact finite-difference schemes of the same order of spatial approximation. One feature of bicompact schemes is considered: their spatial approximation is rigidly tied to Cartesian meshes (with parallelepiped-shaped cells in three-dimensional case). This feature makes rather challenging any application of bicompact schemes to problems with complex computational domains as treated in the framework of unstructured meshes. This problem is proposed to be solved using well-known methods for treating complex-shaped boundaries and their corresponding boundary conditions on Cartesian meshes. The generalization of bicompact schemes on problems in geometrically complex domains is made in case of gas dynamics problems and Euler equations. The free boundary method is chosen as a particular tool to introduce the influence of arbitrary-shaped solid boundaries on gas flows on Cartesian meshes. A brief description of this method is given, its governing equations are written down. Bicompact schemes of fourth order of approximation in space with locally one-dimensional splitting are constructed for equations of the free boundary method. Its compensation flux is discretized with second order of accuracy. Time stepping in the obtained schemes is done with the implicit Euler method and the third order accurate $L$-stable stiffly accurate three-stage singly diagonally implicit Runge–Kutta method. The designed bicompact schemes are tested on three two-dimensional problems: stationary supersonic flows with Mach number three past one circular cylinder and past three circular cylinders; the non-stationary interaction of planar shock wave with a circular cylinder in a channel with planar parallel walls. The obtained results are in a good agreement with other works: influence of solid bodies on gas flows is physically correct, pressure in control points on solid surfaces is calculated with the accuracy appropriate to the chosen mesh resolution and level of numerical dissipation.

  4. Mitin A.L., Kalashnikov S.V., Yankovskiy E.A., Aksenov A.A., Zhluktov S.V., Chernyshev S.A.
    Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290

    The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.

  5. Krechet V.G., Oshurko V.B., Kisser A.E.
    Cosmological models of the Universe without a Beginning and without a singularity
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 473-486

    A new type of cosmological models for the Universe that has no Beginning and evolves from the infinitely distant past is considered.

    These models are alternative to the cosmological models based on the Big Bang theory according to which the Universe has a finite age and was formed from an initial singularity.

    In our opinion, there are certain problems in the Big Bang theory that our cosmological models do not have.

    In our cosmological models, the Universe evolves by compression from the infinitely distant past tending a finite minimum of distances between objects of the order of the Compton wavelength $\lambda_C$ of hadrons and the maximum density of matter corresponding to the hadron era of the Universe. Then it expands progressing through all the stages of evolution established by astronomical observations up to the era of inflation.

    The material basis that sets the fundamental nature of the evolution of the Universe in the our cosmological models is a nonlinear Dirac spinor field $\psi(x^k)$ with nonlinearity in the Lagrangian of the field of type $\beta(\bar{\psi}\psi)^n$ ($\beta = const$, $n$ is a rational number), where $\psi(x^k)$ is the 4-component Dirac spinor, and $\psi$ is the conjugate spinor.

    In addition to the spinor field $\psi$ in cosmological models, we have other components of matter in the form of an ideal liquid with the equation of state $p = w\varepsilon$ $(w = const)$ at different values of the coefficient $w (−1 < w < 1)$. Additional components affect the evolution of the Universe and all stages of evolution occur in accordance with established observation data. Here $p$ is the pressure, $\varepsilon = \rho c^2$ is the energy density, $\rho$ is the mass density, and $c$ is the speed of light in a vacuum.

    We have shown that cosmological models with a nonlinear spinor field with a nonlinearity coefficient $n = 2$ are the closest to reality.

    In this case, the nonlinear spinor field is described by the Dirac equation with cubic nonlinearity.

    But this is the Ivanenko–Heisenberg nonlinear spinor equation which W.Heisenberg used to construct a unified spinor theory of matter.

    It is an amazing coincidence that the same nonlinear spinor equation can be the basis for constructing a theory of two different fundamental objects of nature — the evolving Universe and physical matter.

    The developments of the cosmological models are supplemented by their computer researches the results of which are presented graphically in the work.

  6. Chernyaev A.P., Chernyaeva S.A.
    Features of numerical solutions of some problems for cnoidal waves as periodic solutions of the Korteweg – de Vries
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 885-901

    This article discusses the features of the numerical solutions of some problems for cnoidal waves, which are periodic solutions of the classical Korteweg – de Vries equation of the traveling wave type. Exact solutions describing these waves were obtained by communicating the autowave approximation of the Korteweg – de Vries equation to ordinary functions of the third, second, and finally, first orders. Referring to a numerical example shows that in this way ordinary differential equations are not equivalent. The theorem formulated and proved in this article and the remark to it include the set of solutions of the first and second order, which, in their ordinal, are not equivalent. The ordinary differential equation of the first order obtained by the autowave approximation for the description of a cnoidal wave (a periodic solution) and a soliton (a solitary wave). Despite this, from a computational point of view, this equation is the most inconvenient. For this equation, the Lipschitz condition for the sought-for function is not satisfied in the neighborhood of constant solutions. Hence, the existence theorem and the unique solutions of the Cauchy problem for an ordinary differential equation of the first order are not valid. In particular, the uniqueness of the solution to the Cauchy problem is violated at stationary points. Therefore, for an ordinary differential equation of the first order, obtained from the Korteweg – de Vries equation, both in the case of a cnoidal wave and in the case of a soliton, the Cauchy problem cannot be posed at the extremum points. The first condition can be a set position between adjacent extremum points. But for the second, third and third orders, the initial conditions can be set at the growth points and at the extremum points. In this case, the segment for the numerical solution greatly expands and periodicity is observed. For the solutions of these ordinary solutions, the statements of the Cauchy problems are studied, and the results are compared with exact solutions and with each other. A numerical realization of the transformation of a cnoidal wave into a soliton is shown. The results of the article have a hemodynamic interpretation of the pulsating blood flow in a cylindrical blood vessel consisting of elastic rings.

  7. Surov V.S.
    Relaxation model of viscous heat-conducting gas
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 23-43

    A hyperbolic model of a viscous heat-conducting gas is presented, in which the Maxwell – Cattaneo approach is used to hyperbolize the equations, which provides finite wave propagation velocities. In the modified model, instead of the original Stokes and Fourier laws, their relaxation analogues were used and it is shown that when the relaxation times $\tau_\sigma^{}$ и $\tau_w^{}$ tend to The hyperbolized equations are reduced to zero to the classical Navier – Stokes system of non-hyperbolic type with infinite velocities of viscous and heat waves. It is noted that the hyperbolized system of equations of motion of a viscous heat-conducting gas considered in this paper is invariant not only with respect to the Galilean transformations, but also with respect to rotation, since the Yaumann derivative is used when differentiating the components of the viscous stress tensor in time. To integrate the equations of the model, the hybrid Godunov method (HGM) and the multidimensional nodal method of characteristics were used. The HGM is intended for the integration of hyperbolic systems in which there are equations written both in divergent form and not resulting in such (the original Godunov method is used only for systems of equations presented in divergent form). A linearized solver’s Riemann is used to calculate flow variables on the faces of adjacent cells. For divergent equations, a finitevolume approximation is applied, and for non-divergent equations, a finite-difference approximation is applied. To calculate a number of problems, we also used a non-conservative multidimensional nodal method of characteristics, which is based on splitting the original system of equations into a number of one-dimensional subsystems, for solving which a one-dimensional nodal method of characteristics was used. Using the described numerical methods, a number of one-dimensional problems on the decay of an arbitrary rupture are solved, and a two-dimensional flow of a viscous gas is calculated when a shock jump interacts with a rectangular step that is impermeable to gas.

  8. The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.

    Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.

    Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.

    The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.

  9. Akindinov G.D., Matyukhin V.V., Krivorotko O.I.
    Numerical solving of an inverse problem of a hyperbolic heat equation with small parameter
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 245-258

    In this paper we describe an algorithm of numerical solving of an inverse problem on a hyperbolic heat equation with additional second time derivative with a small parameter. The problem in this case is finding an initial distribution with given final distribution. This algorithm allows finding a solution to the problem for any admissible given precision. Algorithm allows evading difficulties analogous to the case of heat equation with inverted time. Furthermore, it allows finding an optimal grid size by learning on a relatively big grid size and small amount of iterations of a gradient method and later extrapolates to the required grid size using Richardson’s method. This algorithm allows finding an adequate estimate of Lipschitz constant for the gradient of the target functional. Finally, this algorithm may easily be applied to the problems with similar structure, for example in solving equations for plasma, social processes and various biological problems. The theoretical novelty of the paper consists in the developing of an optimal procedure of finding of the required grid size using Richardson extrapolations for optimization problems with inexact gradient in ill-posed problems.

  10. Aksenov A.A., Alexandrova N.A., Budnikov A.V., Zhestkov M.N., Sazonova M.L., Kochetkov M.A.
    Simulation of multi-temperature flows turbulent mixing in a T-junctions by the LES approach in FlowVision software package
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 827-843

    The paper presents the results of numerical simulation of different-temperature water flows turbulent mixing in a T-junctions in the FlowVision software package. The article describes in detail an experimental stand specially designed to obtain boundary conditions that are simple for most computational fluid dynamics software systems. Values of timeaveraged temperatures and velocities in the control sensors and planes were obtained according to the test results. The article presents the system of partial differential equations used in the calculation describing the process of heat and mass transfer in a liquid using the Smagorinsky turbulence model. Boundary conditions are specified that allow setting the random velocity pulsations at the entrance to the computational domain. Distributions of time-averaged water velocity and temperature in control sections and sensors are obtained. The simulation is performed on various computational grids, for which the axes of the global coordinate system coincide with the directions of hot and cold water flows. The possibility for FlowVision PC to construct a computational grid in the simulation process based on changes in flow parameters is shown. The influence of such an algorithm for constructing a computational grid on the results of calculations is estimated. The results of calculations on a diagonal grid using a beveled scheme are given (the direction of the coordinate lines does not coincide with the direction of the tee pipes). The high efficiency of the beveled scheme is shown when modeling flows whose general direction does not coincide with the faces of the calculated cells. A comparison of simulation results on various computational grids is carried out. The numerical results obtained in the FlowVision PC are compared with experimental data and calculations performed using other computing programs. The results of modeling turbulent mixing of water flow of different temperatures in the FlowVision PC are closer to experimental data in comparison with calculations in CFX ANSYS. It is shown that the application of the LES turbulence model on relatively small computational grids in the FlowVision PC allows obtaining results with an error within 5%.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"