All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Studying indicators of development of oligopolistic markets on the basis of operational calculus
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 949-963The traditional approach to computing optimal game strategies of firms on oligopolistic markets and of indicators of such markets consists in studying linear dynamical games with quadratic criteria and solving generalized matrix Riccati equations.
The other approach proposed by the author is based on methods of operational calculus (in particular, Z-transform). This approach makes it possible to achieve economic meaningful decisions under wider field of parameter values. It characterizes by simplicity of computations and by necessary for economic analysis visibility. One of its advantages is that in many cases important for economic practice, it, in contrast to the traditional approach, provides the ability to make calculations using widespread spreadsheets, which allows to study the prospects for the development of oligopolistic markets to a wide range of professionals and consumers.
The article deals with the practical aspects of determining the optimal Nash–Cournot strategies of participants in oligopolistic markets on the basis of operational calculus, in particular the technique of computing the optimal Nash–Cournot strategies in Excel. As an illustration of the opportinities of the proposed methods of calculation, examples close to the practical problems of forecasting indicators of the markets of high-tech products are studied.
The results of calculations obtained by the author for numerous examples and real economic systems, both using the obtained relations on the basis of spreadsheets and using extended Riccati equations, are very close. In most of the considered practical problems, the deviation of the indicators calculated in accordance with the two approaches, as a rule, does not exceed 1.5–2%. The highest value of relative deviations (up to 3–5%) is observed at the beginning of the forecasting period. In typical cases, the period of relatively noticeable deviations is 3–5 moments of time. After the transition period, there is almost complete agreement of the values of the required indicators using both approaches.
-
High-throughput identification of hydride phase-change kinetics models
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.
-
On the permissible intensity of laser radiation in the optical system and on the technology for measuring the absorption coefficient of its power
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1025-1044Laser damage to transparent solids is a major limiting factor output power of laser systems. For laser rangefinders, the most likely destruction cause of elements of the optical system (lenses, mirrors) actually, as a rule, somewhat dusty, is not an optical breakdown as a result of avalanche, but such a thermal effect on the dust speck deposited on an element of the optical system (EOS), which leads to its ignition. It is the ignition of a speck of dust that initiates the process of EOS damage.
The corresponding model of this process leading to the ignition of a speck of dust takes into account the nonlinear Stefan –Boltzmann law of thermal radiation and the infinite thermal effect of periodic radiation on the EOS and the speck of dust. This model is described by a nonlinear system of differential equations for two functions: the EOS temperature and the dust particle temperature. It is proved that due to the accumulating effect of periodic thermal action, the process of reaching the dust speck ignition temperature occurs almost at any a priori possible changes in this process of the thermophysical parameters of the EOS and the dust speck, as well as the heat exchange coefficients between them and the surrounding air. Averaging these parameters over the variables related to both the volume and the surfaces of the dust speck and the EOS is correct under the natural constraints specified in the paper. The entire really significant spectrum of thermophysical parameters is covered thanks to the use of dimensionless units in the problem (including numerical results).
A thorough mathematical study of the corresponding nonlinear system of differential equations made it possible for the first time for the general case of thermophysical parameters and characteristics of the thermal effect of periodic laser radiation to find a formula for the value of the permissible radiation intensity that does not lead to the destruction of the EOS as a result of the ignition of a speck of dust deposited on the EOS. The theoretical value of the permissible intensity found in the general case in the special case of the data from the Grasse laser ranging station (south of France) almost matches that experimentally observed in the observatory.
In parallel with the solution of the main problem, we derive a formula for the power absorption coefficient of laser radiation by an EOS expressed in terms of four dimensionless parameters: the relative intensity of laser radiation, the relative illumination of the EOS, the relative heat transfer coefficient from the EOS to the surrounding air, and the relative steady-state temperature of the EOS.
-
Modeling the dynamics of public attention to extended processes on the example of the COVID-19 pandemic
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1131-1141The dynamics of public attention to COVID-19 epidemic is studied. The level of public attention is described by the daily number of search requests in Google made by users from a given country. In the empirical part of the work, data on the number of requests and the number of infected cases for a number of countries are considered. It is shown that in all cases the maximum of public attention occurs earlier than the maximum daily number of newly infected individuals. Thus, for a certain period of time, the growth of the epidemics occurs in parallel with the decline in public attention to it. It is also shown that the decline in the number of requests is described by an exponential function of time. In order to describe the revealed empirical pattern, a mathematical model is proposed, which is a modification of the model of the decline in attention after a one-time political event. The model develops the approach that considers decision-making by an individual as a member of the society in which the information process takes place. This approach assumes that an individual’s decision about whether or not to make a request on a given day about COVID is based on two factors. One of them is an attitude that reflects the individual’s long-term interest in a given topic and accumulates the individual’s previous experience, cultural preferences, social and economic status. The second is the dynamic factor of public attention to the epidemic, which changes during the process under consideration under the influence of informational stimuli. With regard to the subject under consideration, information stimuli are related to epidemic dynamics. The behavioral hypothesis is that if on some day the sum of the attitude and the dynamic factor exceeds a certain threshold value, then on that day the individual in question makes a search request on the topic of COVID. The general logic is that the higher the rate of infection growth, the higher the information stimulus, the slower decreases public attention to the pandemic. Thus, the constructed model made it possible to correlate the rate of exponential decrease in the number of requests with the rate of growth in the number of cases. The regularity found with the help of the model was tested on empirical data. It was found that the Student’s statistic is 4.56, which allows us to reject the hypothesis of the absence of a correlation with a significance level of 0.01.
-
Running applications on a hybrid cluster
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 475-483Views (last year): 4.A hybrid cluster implies the use of computational devices with radically different architectures. Usually, these are conventional CPU architecture (e.g. x86_64) and GPU architecture (e. g. NVIDIA CUDA). Creating and exploiting such a cluster requires some experience: in order to harness all computational power of the described system and get substantial speedup for computational tasks many factors should be taken into account. These factors consist of hardware characteristics (e.g. network infrastructure, a type of data storage, GPU architecture) as well as software stack (e.g. MPI implementation, GPGPU libraries). So, in order to run scientific applications GPU capabilities, software features, task size and other factors should be considered.
This report discusses opportunities and problems of hybrid computations. Some statistics from tests programs and applications runs will be demonstrated. The main focus of interest is open source applications (e. g. OpenFOAM) that support GPGPU (with some parts rewritten to use GPGPU directly or by replacing libraries).
There are several approaches to organize heterogeneous computations for different GPU architectures out of which CUDA library and OpenCL framework are compared. CUDA library is becoming quite typical for hybrid systems with NVIDIA cards, but OpenCL offers portability opportunities which can be a determinant factor when choosing framework for development. We also put emphasis on multi-GPU systems that are often used to build hybrid clusters. Calculations were performed on a hybrid cluster of SPbU computing center.
-
Protection of biological resources in the coastal area: the mathematical model
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1109-1125Views (last year): 1. Citations: 1 (RSCI).Protection of aquatic biological resources in the coastal area has significant features (a large number of small fishing vessels, the dynamism of the situation, the use of coastal protection), by virtue of which stands in a class of applications. A mathematical model of protection designed for the determination of detection equipment and means of violators of the situation in order to ensure the function of deterrence of illegal activities. Resolves a tactical game-theoretic problem - find the optimal line patrol (parking) means of implementation (guard boats) and optimal removal of seats from the shore fishing violators. Using the methods of the theory of experimental design, linear regression models to assess the contribution of the main factors affecting the results of the simulation.
In order to enhance the sustainability and adequacy of the model is proposed to use the mechanism of rankings means of protection, based on the borders and the rank and Pareto allows to take into account the principles of protection and further means of protection. To account for the variability of the situation offered several scenarios in which it is advisable to perform calculations.
-
Spatiotemporal dynamics and the principle of competitive exclusion in community
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824Views (last year): 11.Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.
-
Estimation of models parameters for time series with Markov switching regimes
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918Views (last year): 36.The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.
-
Modelling of trends in the volume and structure of accumulated credit indebtedness in the banking system
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 965-978The volume and structure of accumulated credit debt to the banking system depends on many factors, the most important of which is the level of interest rates. The correct assessment of borrowers’ reaction to the changes in the monetary policy allows to develop econometric models, representing the structure of the credit portfolio in the banking system by terms of lending. These models help to calculate indicators characterizing the level of interest rate risk in the whole system. In the study, we carried out the identification of four types of models: discrete linear model based on transfer functions; the state-space model; the classical econometric model ARMAX, and a nonlinear Hammerstein –Wiener model. To describe them, we employed the formal language of automatic control theory; to identify the model, we used the MATLAB software pack-age. The study revealed that the discrete linear state-space model is most suitable for short-term forecasting of both the volume and the structure of credit debt, which in turn allows to predict trends in the structure of accumulated credit debt on the forecasting horizon of 1 year. The model based on the real data has shown a high sensitivity of the structure of credit debt by pay back periods reaction to the changes in the Ñentral Bank monetary policy. Thus, a sharp increase in interest rates in response to external market shocks leads to shortening of credit terms by borrowers, at the same time the overall level of debt rises, primarily due to the increasing revaluation of nominal debt. During the stable falling trend of interest rates, the structure shifts toward long-term debts.
-
Application of simplified implicit Euler method for electrophysiological models
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 845-864A simplified implicit Euler method was analyzed as an alternative to the explicit Euler method, which is a commonly used method in numerical modeling in electrophysiology. The majority of electrophysiological models are quite stiff, since the dynamics they describe includes a wide spectrum of time scales: a fast depolarization, that lasts milliseconds, precedes a considerably slow repolarization, with both being the fractions of the action potential observed in excitable cells. In this work we estimate stiffness by a formula that does not require calculation of eigenvalues of the Jacobian matrix of the studied ODEs. The efficiency of the numerical methods was compared on the case of typical representatives of detailed and conceptual type models of excitable cells: Hodgkin–Huxley model of a neuron and Aliev–Panfilov model of a cardiomyocyte. The comparison of the efficiency of the numerical methods was carried out via norms that were widely used in biomedical applications. The stiffness ratio’s impact on the speedup of simplified implicit method was studied: a real gain in speed was obtained for the Hodgkin–Huxley model. The benefits of the usage of simple and high-order methods for electrophysiological models are discussed along with the discussion of one method’s stability issues. The reasons for using simplified instead of high-order methods during practical simulations were discussed in the corresponding section. We calculated higher order derivatives of the solutions of Hodgkin-Huxley model with various stiffness ratios; their maximum absolute values appeared to be quite large. A numerical method’s approximation constant’s formula contains the latter and hence ruins the effect of the other term (a small factor which depends on the order of approximation). This leads to the large value of global error. We committed a qualitative stability analysis of the explicit Euler method and were able to estimate the model’s parameters influence on the border of the region of absolute stability. The latter is used when setting the value of the timestep for simulations a priori.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"