All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Numerical investigation of photoexcited polaron states in water
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261Citations: 1 (RSCI).A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.
-
Numerical modeling of straight 3D exploration seismology problems with use of grid-characteristic method on unstructured tetrahedral meshes
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 875-887Views (last year): 7. Citations: 1 (RSCI).The article contains results of 3D modeling of seismic responses from fractured geological formations with use of grid-characteristic method on unstructured tetrahedral meshes with use of high-performance computation systems. The method being used is the most suitable for modeling of heterogenic domains exploration seismology problems. The use of unstructured tetrahedral meshes allows modeling of different geometry and space orientation fractures. That gives us possibility to solve the problems in the most real set.
-
Investigation of the relationships of the size and production characteristics of phyto- and zooplankton in the Vistula and Curonian lagoons of the Baltic Sea. Part 1. The statistical analysis of long-term observation data and development of the structure for the mathematical model of the plankton food chain
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 211-246In the paper the statistical relationships between the size and production characteristics of phytoplankton and zooplankton of the Vistula and Curonian lagoons, the Baltic Sea, were investigated. Research phytoplankton and zooplankton within the Russian part of the area of the Vistula and the Curonian lagoon was carried out on the monthly basis (from April to November) within the framework of long-term monitoring program on evaluating of ecological status of the lagoons. The size structure of plankton is the basis for understanding of the development of production processes, mechanisms of formation of the plankton species diversity and functioning of the lagoon ecosystems. As results of the work it was found that the maximum rate of photosynthesis and the integral value of the primary production with a change in cell volume of phytoplankton are changed according to a power law. The result shows that the smaller the size of algal cells in phytoplankton communities the more actively occur metabolism and the more effective they assimilate the solar energy. It is shown that the formation of plankton species diversity in ecosystems of lagoons is closely linked with the size structure of plankton communities and with features of development of the production processes. It is proposed the structure of a spatially homogenous mathematical model of the plankton food chain for the lagoon ecosystems taking into account the size spectrum and the characteristics of phytoplankton and zooplankton. The model parameters are the sizedependent indicators allometrically linked with average volumes of cells and organisms in different ranges of their sizes. In the model the algorithm for changes over time the coefficients of food preferences in the diet of zooplankton was proposed. Developed the size-dependent mathematical model of aquatic ecosystems allows to consider the impact of turbulent exchange on the size structure and temporal dynamics of the plankton food chain of the Vistula and Curonian lagoons. The model can be used to study the different regimes of dynamic behavior of plankton systems depending on the changes in the values of its parameters and external influences, as well as to quantify the redistribution of matter flows in ecosystems of the lagoons.
Keywords: ecosystem, nutrients, phytoplankton, zooplankton, plankton detritus, size structure, the maximum rate of photosynthesis, integrated primary production, zooplankton production, allometric scaling, Shannon index of species diversity, mathematical modeling, ecological simulation model, turbulent exchange.Views (last year): 9. -
Views (last year): 17.
In the article is carried out the analysis of historical process with the use of methods of synergetics (science about the nonlinear developing systems in nature and the society), developed in the works of D. S. Chernavskii in connection with to economic and social systems. It is shown that social self-organizing depending on conditions leads to the formation of both the societies with the strong internal competition (Y-structures) and cooperative type societies (X-structures). Y-structures are characteristic for the countries of the West, X-structure are characteristic for the countries of the East. It is shown that in XIX and in XX centuries occurred accelerated shaping and strengthening of Y-structures. However, at present world system entered into the period of serious structural changes in the economic, political, ideological spheres: the domination of Y-structures concludes. Are examined the possible ways of further development of the world system, connected with change in the regimes of self-organizing and limitation of internal competition. This passage will be prolonged and complex. Under these conditions it will objectively grow the value of the civilizational experience of Russia, on basis of which was formed combined type social system. It is shown that ultimately inevitable the passage from the present do-mination of Y-structures to the absolutely new global system, whose stability will be based on the new ideology, the new spirituality (i.e., new “conditional information” according D. S. Chernavskii), which makes a turn from the principles of competition to the principles of collaboration.
-
Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.
In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.
-
Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.
The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.
Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.
-
Numerical simulation of inverse mode propagation in-situ combustion direct-flow waves
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 993-1006One of the promising technologies for enhanced oil recovery in the development of unconventional oil reservoirs is the thermo-gas method. The method is based on the injection of an oxygen-containing mixture into the formation and its transformation into a highly efficient displacing agent miscible with the formation of oil due to spontaneous in-situ oxidative processes. In some cases, this method has great potential compared to other methods of enhanced oil recovery. This paper discusses some issues of the propagation of in-situ combustion waves. Depending on the parameters of the reservoir and the injected mixture, such waves can propagate in different modes. In this paper, only the direct-flow inverse propagation mode is considered. In this mode, the combustion wave propagates in the direction of the oxidant flow and the reaction front lags behind the heatwave, in which the substance (hydrocarbon fractions, porous skeleton, etc.) is heated to temperatures sufficient for the oxidation reaction to occur. The paper presents the results of an analytical study and numerical simulation of the structure of the inverse wave of in-situ combustion. in two-phase flow in a porous layer. Some simplifying assumptions about the thermal properties of fluid phases was accepted, which allow, on the one hand, to modify the in-situ combustion model observable for analysis, and with another is to convey the main features of this process. The solution of the “running wave” type is considered and the conditions of its implementation are specified. Selected two modes of reaction trailing front regime in-situ combustion waves: hydrodynamic and kinetic. Numerical simulation of the in-situ combustion wave propagation was carried out with using the thermohydrodynamical simulator developed for the numerical integration of non-isothermal multicomponent filtration flows accompanied by phase transitions and chemical reaction.
-
Fluorescent probe immobilization into enzyme molecules
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 835-843Views (last year): 2. Citations: 3 (RSCI).The results of the experimental and theoretical researches of kinetics of erythrosine penetration into collagenase molecules have represented in this paper. The case with introduction of the compound (fluorescent probe) which has dimers to enzyme solution as an injection has been considered. It was shown that monomers and dimers can penetrate into enzyme molecules with formation complexes monomer — enzyme, dimer- enzyme. Moreover, transformation of probe fluorescence spectra is at each time moment. Spectrum maximum shift, and its form change. At a time, the immobilized dye dimers greatly impact to formation of end fluorescence spectrum. Well correlation between experimental and theoretical results confirms reality of the obtained data.
-
Effect of the surface on characteristics of amorphization Ni-Ag system
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 263-269Views (last year): 1. Citations: 1 (RSCI).Molecular dynamics simulation using the embedded-atom method is applied to study the structural evolution of the particle diameter of 40 Å during the quenching process. Was carried comparative analysis of the structural reconstruction for the particle and the bulk models. Was a reduction in temperature of the beginning and end of the transformation of the particle. In formation of a percolation cluster from interpenetrating and contacting icosahedrons, for model of the particle, it is involved for 10 percent of atoms more, than for model of a bulk.
-
Analysis of point model of fibrin polymerization
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 247-258Views (last year): 8.Functional modeling of blood clotting and fibrin-polymer mesh formation is of a significant value for medical and biophysics applications. Despite the fact of some discrepancies present in simplified functional models their results are of the great interest for the experimental science as a handy tool of the analysis for research planning, data processing and verification. Under conditions of the good correspondence to the experiment functional models can be used as an element of the medical treatment methods and biophysical technologies. The aim of the paper in hand is a modeling of a point system of the fibrin-polymer formation as a multistage polymerization process with a sol-gel transition at the final stage. Complex-value Rosenbroke method of second order (CROS) used for computational experiments. The results of computational experiments are presented and discussed. It was shown that in the physiological range of the model coefficients there is a lag period of approximately 20 seconds between initiation of the reaction and fibrin gel appearance which fits well experimental observations of fibrin polymerization dynamics. The possibility of a number of the consequent $(n = 1–3)$ sol-gel transitions demonstrated as well. Such a specific behavior is a consequence of multistage nature of fibrin polymerization process. At the final stage the solution of fibrin oligomers of length 10 can reach a semidilute state, leading to an extremely fast gel formation controlled by oligomers’ rotational diffusion. Otherwise, if the semidilute state is not reached the gel formation is controlled by significantly slower process of translational diffusion. Such a duality in the sol-gel transition led authors to necessity of introduction of a switch-function in an equation for fibrin-polymer formation kinetics. Consequent polymerization events can correspond to experimental systems where fibrin mesh formed gets withdrawn from the volume by some physical process like precipitation. The sensitivity analysis of presented system shows that dependence on the first stage polymerization reaction constant is non-trivial.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"