Результаты поиска по 'integration':
Найдено статей: 138
  1. When a supersonic air flow interacts with a transverse secondary jet injected into this flow through an orifice on a flat wall, a special flow structure is formed. This flow takes place during fuel injection into combustion chambers of supersonic aircraft engines; therefore, in recent years, various approaches to intensifying gas mixing in this type of flow have been proposed and studied in several countries. The approach proposed in this work implies using spark discharges for pulsed heating of the gas and generating the instabilities in the shear layer at the boundary of the secondary jet. Using simulation in the software package FlowVision 3.13, the characteristics of this flow were obtained in the absence and presence of pulsed-periodic local heat release on the wall on the windward side of the injector opening. A comparison was made of local characteristics at different periodicities of pulsed heating (corresponding to the values of the Strouhal number 0.25 and 0.31). It is shown that pulsed heating can stimulate the formation of perturbations in the shear layer at the jet boundary. For the case of the absence of heating and for two modes of pulsed heating, the values of an integral criterion for mixing efficiency were calculated. It is shown that pulsed heating can lead both to a decrease in the average mixing efficiency and to its increase (up to 9% in the considered heating mode). The calculation method used (unsteady Reynolds-averaged Navier – Stokes equations with a modified $k-\varepsilon$ turbulence model) was validated by considering a typical case of the secondary transverse jet interaction with a supersonic flow, which was studied by several independent research groups and well documented in the literature. The grid convergence was shown for the simulation of this typical case in FlowVision. A quantitative comparison was made of the results obtained from FlowVision calculations with experimental data and calculations in other programs. The results of this study can be useful for specialists dealing with the problems of gas mixing and combustion in a supersonic flow, as well as the development of engines for supersonic aviation.

  2. Russkikh S.V., Shklyarchuk F.N.
    Numerical solution of systems of nonlinear second-order differential equations with variable coefficients by the one-step Galerkin method
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1153-1167

    A nonlinear oscillatory system described by ordinary differential equations with variable coefficients is considered, in which terms that are linearly dependent on coordinates, velocities and accelerations are explicitly distinguished; nonlinear terms are written as implicit functions of these variables. For the numerical solution of the initial problem described by such a system of differential equations, the one-step Galerkin method is used. At the integration step, unknown functions are represented as a sum of linear functions satisfying the initial conditions and several given correction functions in the form of polynomials of the second and higher degrees with unknown coefficients. The differential equations at the step are satisfied approximately by the Galerkin method on a system of corrective functions. Algebraic equations with nonlinear terms are obtained, which are solved by iteration at each step. From the solution at the end of each step, the initial conditions for the next step are determined.

    The corrective functions are taken the same for all steps. In general, 4 or 5 correction functions are used for calculations over long time intervals: in the first set — basic power functions from the 2nd to the 4th or 5th degrees; in the second set — orthogonal power polynomials formed from basic functions; in the third set — special linear-independent polynomials with finite conditions that simplify the “docking” of solutions in the following steps.

    Using two examples of calculating nonlinear oscillations of systems with one and two degrees of freedom, numerical studies of the accuracy of the numerical solution of initial problems at various time intervals using the Galerkin method using the specified sets of power-law correction functions are performed. The results obtained by the Galerkin method and the Adams and Runge –Kutta methods of the fourth order are compared. It is shown that the Galerkin method can obtain reliable results at significantly longer time intervals than the Adams and Runge – Kutta methods.

  3. Ivankov A.A., Finchenko V.S.
    Numerical study of thermal destruction of the ”Chelyabinsk” meteorite when entering the Earth’s atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 941-956

    A mathematical model for the numerical study of thermal destruction of the "Chelyabinsk" meteorite when entering the Earth’s atmosphere is presented in the article. The study was conducted in the framework of an integrated approach, including the calculation of the meteorite trajectory associated with the physical processes connected with the meteorite motion. Together with the trajectory the flow field and radiation-convective heat
    transfer were determined as well as warming and destruction of the meteorite under the influence of the calculated heat load. An integrated approach allows to determine the trajectories of space objects more precisely, predict the area of their fall and destruction.

    Citations: 4 (RSCI).
  4. Karaban V.M., Sukhorukov M.P., Morozov E.A.
    Software implementation of the three-dimensional modeling of thermal processes in multilayer integrated circuits for space purposes
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 397-403

    In this paper we consider software implementation of three-dimensional modeling of thermal processes in multilayer integrated circuits based on low-temperature co-veneering ceramic. The results obtained by the software implemented by the example of the radio frequency receiver module based on low-temperature ceramics for autonomous navigation systems. And also provides a comparison with the results of certified software product.

    Views (last year): 4. Citations: 1 (RSCI).
  5. Kalinin I.N., Glukharev K.K.
    Interchange integral characteristics study via microscopic traffic flow models
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 523-534

    The problem of application of miscroscopic traffic models for the analysis of large network segments is discussed with an example of discrete flow with safe distance. A concept of integral charasteristics of network segments is introduced, a method for obtaining such characteristics via microscopic traffic flow models is presented. Said method is applied to a circular unidirectional interchange, obtained characteristics analysed.

    Views (last year): 4. Citations: 7 (RSCI).
  6. Nazarov V.G.
    Improvement of image quality in a computer tomography by means of integral transformation of a special kind
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1033-1046

    The question on improvement of quality of images obtained in a tomography problem is considered. The problem consists in finding of boundaries of inhomogeneities (inclusions) in a continuous medium by results of X-ray radiography of this medium. A nonlinear integral transformation of a special kind is proposed which allows to improve quality of images obtained earlier at a set of papers. The method is realized numerically by the use of computer modelling. Some calculations are carried out with use of data for concrete materials. The results obtained are presented by drawings and graphic images.

    Views (last year): 6.
  7. Sviridenko A.B., Zelenkov G.A.
    Correlation and realization of quasi-Newton methods of absolute optimization
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78

    Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.

    Views (last year): 7. Citations: 5 (RSCI).
  8. The article discusses the model of the anthropomorphic type of mechanism of the exoskeleton with links of variable length. Four models of parts of variable length are considered comprehensively: the model link of the exoskeleton of variable length with a resilient member and a rigid strong core; the model of the telescopic link; the model link with the masses in the hinge-joint between them; the link model with an arbitrary number of masses. The differential equations of motion in the form of Lagrange equations of the second kind are made. On the basis of analysis of differential equations of motion for multi-link rod of a mechanical system type, exoskeleton revealed their structure, which allowed us to represent them in vector-matrix form. The General pattern of building matrices are established for the first time and the generalization of the expressions for elements of matrices in two-dimensional case are obtained. New recursive and matrix methods of composing of differential equations of motion are given. A unified approach to constructing differential equations of motion of the exoskeleton based on the developed recursive and matrix methods write differential equations of motion of the proposed exoskeleton. Comparison of the time of writing the differential equations of motion proposed methods, in comparison with the Lagrange equations of the second kind, in the system of computer mathematics Mathematica conducted. An analytical study of the model of the exoskeleton carried out. It was found that for mechanisms with n movable links of the Cauchy problem for systems of differential equations of motion for any initial conditions there is no single and unlimited continue. Control of the exoskeleton is accomplished using the torques which are located in the hinge-joints in the joints of the links and simulating control actions. Numerical investigation of a model of the exoskeleton is made, a comparison of results of calculations for exoskeletons with various models of units is held. A numerical study of the empirical evidence about the man and his movements is used. It is established that the choice structure of the exoskeleton model with lumped masses is more preferable to a model with perfectly rigid strong core. As an exoskeleton, providing comfortable movement of people, and you should repeat the properties of the musculoskeletal system.

    Views (last year): 15. Citations: 2 (RSCI).
  9. Babakov A.V., Chechetkin V.M.
    Mathematical simulation of vortex motion in the astrophysical objects on the basis of the gas-dynamic model
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 631-643

    The application of a conservative numerical method of fluxes is examined for studying the vortex structures in the massive, fast-turned compact astrophysical objects, which are in self-gravity conditions. The simulation is accomplished for the objects with different mass and rotational speed. The pictures of the vortex structure of objects are visualized. In the calculations the gas-dynamic model is used, in which gas is accepted perfected and nonviscous. Numerical procedure is based on the finite-difference approximation of the conservation laws of the additive characteristics of medium for the finite volume. The “upwind” approximations of the densities of distribution of mass, components of momentum and total energy are applied. For the simulation of the objects, which possess fast-spin motion, the control of conservation for the component of moment of momentun is carried out during calculation. Evolutionary calculation is carried out on the basis of the parallel algorithms, realized on the computer complex of cluster architecture. Algorithms are based on the standardized system of message transfer Message Passing Interface (MPI). The blocking procedures of exchange and non-blocking procedures of exchange with control of the completion of operation are used. The parallelization on the space in two or three directions is carried out depending on the size of integration area and parameters of computational grid. For each subarea the parallelization based on the physical factors is carried out also: the calculations of gas dynamics part and gravitational forces are realized on the different processors, that allows to raise the efficiency of algorithms. The real possibility of the direct calculation of gravitational forces by means of the summation of interaction between all finite volumes in the integration area is shown. For the finite volume methods this approach seems to more consecutive than the solution of Poisson’s equation for the gravitational potential. Numerical calculations were carried out on the computer complex of cluster architecture with the peak productivity 523 TFlops. In the calculations up to thousand processors was used.

    Views (last year): 27.
  10. Kozhanov D.A., Lyubimov A.K.
    Import model of flexible woven composites in ANSYS Mechanical APDL
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 789-799

    A variant of import into ANSYS Mechanical APDL system of the model of behavior of flexible woven composite materials with reinforcing weaving cloth of linen at static stretching along the reinforcement yarns is offered. The import was carried out using an integration module based on the use of an analytical model of deformation of the material under study. The model is presented in the articles published earlier and takes into account the changes in the geometric structure occurring in the reinforcing layer of the material during the deformation process, the formation of irreversible deformations and the interaction of cross-lying reinforcing fabric threads. In the introduction input characteristics of the plain weave of the reinforcing fabric and the analytical model imported into ANSYS are briefly described. The input parameters of the module are the mechanical characteristics of the materials that make up the composite (binder and material of reinforcement yarns), the geometric characteristics of the interlacing of the reinforcing fabric. The algorithm for importing the model is based on the calculation and transfer in ANSYS of the calculated points of the material stress-strain diagram for uniaxial stretching along the reinforcement direction and using the Multilinear Kinematich Hardening model material embedded in the ANSYS. The analytical model imported with the help of the presented module allows to model a composite material with reinforcing fabric without a detailed description of the geometry of the interlacing of threads during modeling of the material as a whole. The imported model was verified. For verification full-scale experimental studies and numerical simulation of the stretching of samples from flexible woven composites were carried out. The analysis of the obtained results showed good qualitative and quantitative agreement of calculations.

    Views (last year): 34.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"