Результаты поиска по 'mathematical modeling':
Найдено статей: 316
  1. The paper presents a physico-mathematical model of the perturbed region formed in the lower D-layer of the ionosphere under the action of directed radio emission flux from a terrestrial stand of the megahertz frequency range, obtained as a result of comprehensive theoretical studies. The model is based on the consideration of a wide range of kinetic processes taking into account their nonequilibrium and in the two-temperature approximation for describing the transformation of the radio beam energy absorbed by electrons. The initial data on radio emission achieved by the most powerful radio-heating stands are taken in the paper. Their basic characteristics and principles of functioning, and features of the altitude distribution of the absorbed electromagnetic energy of the radio beam are briefly described. The paper presents the decisive role of the D-layer of the ionosphere in the absorption of the energy of the radio beam. On the basis of theoretical analysis, analytical expressions are obtained for the contribution of various inelastic processes to the distribution of the absorbed energy, which makes it possible to correctly describe the contribution of each of the processes considered. The work considers more than 60 components. The change of the component concentration describe about 160 reactions. All the reactions are divided into five groups according to their physical content: ionization-chemical block, excitation block of metastable electronic states, cluster block, excitation block of vibrational states and block of impurities. Blocks are interrelated and can be calculated both jointly and separately. The paper presents the behavior of the parameters of the perturbed region in daytime and nighttime conditions is significantly different at the same radio flux density: under day conditions, the maximum electron concentration and temperature are at an altitude of ~45–55 km; in night ~80 km, with the temperature of heavy particles rapidly increasing, which leads to the occurrence of a gas-dynamic flow. Therefore, a special numerical algorithm are developed to solve two basic problems: kinetic and gas dynamic. Based on the altitude and temporal behavior of concentrations and temperatures, the algorithm makes it possible to determine the ionization and emission of the ionosphere in the visible and infrared spectral range, which makes it possible to evaluate the influence of the perturbed region on radio engineering and optoelectronic devices used in space technology.

    Views (last year): 17.
  2. Frisman Y.Y., Kulakov M.P., Revutskaya O.L., Zhdanova O.L., Neverova G.P.
    The key approaches and review of current researches on dynamics of structured and interacting populations
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 119-151

    The review and systematization of current papers on the mathematical modeling of population dynamics allow us to conclude the key interests of authors are two or three main research lines related to the description and analysis of the dynamics of both local structured populations and systems of interacting homogeneous populations as ecological community in physical space. The paper reviews and systematizes scientific studies and results obtained within the framework of dynamics of structured and interacting populations to date. The paper describes the scientific idea progress in the direction of complicating models from the classical Malthus model to the modern models with various factors affecting population dynamics in the issues dealing with modeling the local population size dynamics. In particular, they consider the dynamic effects that arise as a result of taking into account the environmental capacity, density-dependent regulation, the Allee effect, complexity of an age and a stage structures. Particular attention is paid to the multistability of population dynamics. In addition, studies analyzing harvest effect on structured population dynamics and an appearance of the hydra effect are presented. The studies dealing with an appearance and development of spatial dissipative structures in both spatially separated populations and communities with migrations are discussed. Here, special attention is also paid to the frequency and phase multistability of population dynamics, as well as to an appearance of spatial clusters. During the systematization and review of articles on modeling the interacting population dynamics, the focus is on the “prey–predator” community. The key idea and approaches used in current mathematical biology to model a “prey–predator” system with community structure and harvesting are presented. The problems of an appearance and stability of the mosaic structure in communities distributed spatially and coupled by migration are also briefly discussed.

    Views (last year): 40. Citations: 2 (RSCI).
  3. Kashchenko N.M., Ishanov S.A., Matsievsky S.V.
    Simulation equatorial plasma bubbles started from plasma clouds
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 463-476

    Experimental, theoretical and numerical investigations of equatorial spread F, equatorial plasma bubbles (EPBs), plasma depletion shells, and plasma clouds are continued at new variety articles. Nonlinear growth, bifurcation, pinching, atomic and molecular ion dynamics are considered at there articles. But the authors of this article believe that not all parameters of EPB development are correct. For example, EPB bifurcation is highly questionable.

    A maximum speed inside EPBs and a development time of EPB are defined and studied. EPBs starting from one, two or three zones of the increased density (initial plasma clouds). The development mechanism of EPB is the Rayleigh-Taylor instability (RTI). Time of the initial stage of EPB development went into EPB favorable time interval (in this case the increase linear increment is more than zero) and is 3000–7000 c for the Earth equatorial ionosphere.

    Numerous computing experiments were conducted with use of the original two-dimensional mathematical and numerical model MI2, similar USA standard model SAMI2. This model MI2 is described in detail. The received results can be used both in other theoretical works and for planning and carrying out natural experiments for generation of F-spread in Earth ionosphere.

    Numerical simulating was carried out for the geophysical conditions favorable for EPBs development. Numerical researches confirmed that development time of EPBs from initial irregularities with the increased density is significantly more than development time from zones of the lowered density. It is shown that developed irregularities interact among themselves strongly and not linearly even then when initial plasma clouds are strongly removed from each other. In addition, this interaction is stronger than interaction of EPBs starting from initial irregularities with the decreased density. The numerical experiments results showed the good consent of developed EPB parameters with experimental data and with theoretical researches of other authors.

    Views (last year): 14.
  4. Malygina N.V., Surkov P.G.
    On the modeling of water obstacles overcoming by Rangifer tarandus L
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 895-910

    Seasonal migrations and herd instinct are traditionally recognized as wild reindeer (Rangifer tarandus L.) species-specific behavioral signs. These animals are forced to overcome water obstacles during the migrations. Behaviour peculiarities are considered as the result of the selection process, which has chosen among the sets of strategies, as the only evolutionarily stable one, determining the reproduction and biological survival of wild reindeer as a species. Natural processes in the Taimyr population wild reindeer are currently occurring against the background of an increase in the influence of negative factors due to the escalation of the industrial development of the Arctic. That is why the need to identify the ethological features of these animals completely arose. This paper presents the results of applying the classical methods of the theory of optimal control and differential games to the wild reindeer study of the migration patterns in overcoming water barriers, including major rivers. Based on these animals’ ethological features and behavior forms, the herd is presented as a controlled dynamic system, which presents also two classes of individuals: the leader and the rest of the herd, for which their models, describing the trajectories of their movement, are constructed. The models are based on hypotheses, which are the mathematical formalization of some animal behavior patterns. This approach made it possible to find the trajectory of the important one using the methods of the optimal control theory, and in constructing the trajectories of other individuals, apply the principle of control with a guide. Approbation of the obtained results, which can be used in the formation of a common “platform” for the adaptive behavior models systematic construction and as a reserve for the cognitive evolution models fundamental development, is numerically carried out using a model example with observational data on the Werchnyaya Taimyra River.

  5. Muratov M.V., Petrov I.B.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

  6. Korolev S.A., Maykov D.V.
    Solution of the problem of optimal control of the process of methanogenesis based on the Pontryagin maximum principle
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 357-367

    The paper presents a mathematical model that describes the process of obtaining biogas from livestock waste. This model describes the processes occurring in a biogas plant for mesophilic and thermophilic media, as well as for continuous and periodic modes of substrate inflow. The values of the coefficients of this model found earlier for the periodic mode, obtained by solving the problem of model identification from experimental data using a genetic algorithm, are given.

    For the model of methanogenesis, an optimal control problem is formulated in the form of a Lagrange problem, whose criterial functionality is the output of biogas over a certain period of time. The controlling parameter of the task is the rate of substrate entry into the biogas plant. An algorithm for solving this problem is proposed, based on the numerical implementation of the Pontryagin maximum principle. In this case, a hybrid genetic algorithm with an additional search in the vicinity of the best solution using the method of conjugate gradients was used as an optimization method. This numerical method for solving an optimal control problem is universal and applicable to a wide class of mathematical models.

    In the course of the study, various modes of submission of the substrate to the digesters, temperature environments and types of raw materials were analyzed. It is shown that the rate of biogas production in the continuous feed mode is 1.4–1.9 times higher in the mesophilic medium (1.9–3.2 in the thermophilic medium) than in the periodic mode over the period of complete fermentation, which is associated with a higher feed rate of the substrate and a greater concentration of nutrients in the substrate. However, the yield of biogas during the period of complete fermentation with a periodic mode is twice as high as the output over the period of a complete change of the substrate in the methane tank at a continuous mode, which means incomplete processing of the substrate in the second case. The rate of biogas formation for a thermophilic medium in continuous mode and the optimal rate of supply of raw materials is three times higher than for a mesophilic medium. Comparison of biogas output for various types of raw materials shows that the highest biogas output is observed for waste poultry farms, the least — for cattle farms waste, which is associated with the nutrient content in a unit of substrate of each type.

  7. Madera A.G.
    Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038

    A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.

  8. Stepin Y.P., Leonov D.G., Papilina T.M., Stepankina O.A.
    System modeling, risks evaluation and optimization of a distributed computer system
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1349-1359

    The article deals with the problem of a distributed system operation reliability. The system core is an open integration platform that provides interaction of varied software for modeling gas transportation. Some of them provide an access through thin clients on the cloud technology “software as a service”. Mathematical models of operation, transmission and computing are to ensure the operation of an automated dispatching system for oil and gas transportation. The paper presents a system solution based on the theory of Markov random processes and considers the stable operation stage. The stationary operation mode of the Markov chain with continuous time and discrete states is described by a system of Chapman–Kolmogorov equations with respect to the average numbers (mathematical expectations) of the objects in certain states. The objects of research are both system elements that are present in a large number – thin clients and computing modules, and individual ones – a server, a network manager (message broker). Together, they are interacting Markov random processes. The interaction is determined by the fact that the transition probabilities in one group of elements depend on the average numbers of other elements groups.

    The authors propose a multi-criteria dispersion model of risk assessment for such systems (both in the broad and narrow sense, in accordance with the IEC standard). The risk is the standard deviation of estimated object parameter from its average value. The dispersion risk model makes possible to define optimality criteria and whole system functioning risks. In particular, for a thin client, the following is calculated: the loss profit risk, the total risk of losses due to non-productive element states, and the total risk of all system states losses.

    Finally the paper proposes compromise schemes for solving the multi-criteria problem of choosing the optimal operation strategy based on the selected set of compromise criteria.

  9. Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Comparative analysis of human adaptation to the growth of visual information in the tasks of recognizing formal symbols and meaningful images
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 571-586

    We describe an engineering-psychological experiment that continues the study of ways to adapt a person to the increasing complexity of logical problems by presenting a series of problems of increasing complexity, which is determined by the volume of initial data. Tasks require calculations in an associative or non-associative system of operations. By the nature of the change in the time of solving the problem, depending on the number of necessary operations, we can conclude that a purely sequential method of solving problems or connecting additional brain resources to the solution in parallel mode. In a previously published experimental work, a person in the process of solving an associative problem recognized color images with meaningful images. In the new study, a similar problem is solved for abstract monochrome geometric shapes. Analysis of the result showed that for the second case, the probability of the subject switching to a parallel method of processing visual information is significantly reduced. The research method is based on presenting a person with two types of tasks. One type of problem contains associative calculations and allows a parallel solution algorithm. Another type of problem is the control one, which contains problems in which calculations are not associative and parallel algorithms are ineffective. The task of recognizing and searching for a given object is associative. A parallel strategy significantly speeds up the solution with relatively small additional resources. As a control series of problems (to separate parallel work from the acceleration of a sequential algorithm), we use, as in the previous experiment, a non-associative comparison problem in cyclic arithmetic, presented in the visual form of the game “rock, paper, scissors”. In this problem, the parallel algorithm requires a large number of processors with a small efficiency coefficient. Therefore, the transition of a person to a parallel algorithm for solving this problem is almost impossible, and the acceleration of processing input information is possible only by increasing the speed. Comparing the dependence of the solution time on the volume of source data for two types of problems allows us to identify four types of strategies for adapting to the increasing complexity of the problem: uniform sequential, accelerated sequential, parallel computing (where possible), or undefined (for this method) strategy. The Reducing of the number of subjects, who switch to a parallel strategy when encoding input information with formal images, shows the effectiveness of codes that cause subject associations. They increase the speed of human perception and processing of information. The article contains a preliminary mathematical model that explains this phenomenon. It is based on the appearance of a second set of initial data, which occurs in a person as a result of recognizing the depicted objects.

  10. Leon C., Tokarev A.A., Volpert V.A.
    Modelling of cytokine storm in respiratory viral infections
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 619-645

    In this work, we develop a model of the immune response to respiratory viral infections taking into account some particular properties of the SARS-CoV-2 infection. The model represents a system of ordinary differential equations for the concentrations of epithelial cells, immune cells, virus and inflammatory cytokines. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study dynamics of solutions. Behavior of solutions is characterized by large peaks of virus concentration specific for acute respiratory viral infections.

    At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. On the other hand, viral infection down-regulates interferon production. Their competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. In the case of infection outbreak, the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, increase of the initial viral load leads to shorter incubation period and higher maximal viral load.

    In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by excessive production of proinflammatory cytokines. Furthermore, inflammatory cell death can stimulate transition to cytokine storm. However, it cannot sustain it by itself without the innate immune response. Assumptions of the model and obtained results are in qualitative agreement with the experimental and clinical data.

Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"