Результаты поиска по 'mechanical system':
Найдено статей: 73
  1. Yakushevich L.V., Balashova V.N., Zakiryanov F.K.
    Features of the DNA kink motion in the asynchronous switching on and off of the constant and periodic fields
    Computer Research and Modeling, 2018, v. 10, no. 4, pp. 545-558

    Investigation of the influence of external fields on living systems is one of the most interesting and rapidly developing areas of modern biophysics. However, the mechanisms of such an impact are still not entirely clear. One approach to the study of this issue is associated with modeling the interaction of external fields with internal mobility of biological objects. In this paper, this approach is used to study the effect of external fields on the motion of local conformational distortions — kinks, in the DNA molecule. Realizing and taking into account that on the whole this task is closely connected with the problem of the mechanisms of regulation of vital processes of cells and cellular systems, we set the problem — to investigate the physical mechanisms regulating the motion of kinks and also to answer the question whether permanent and periodic fields can play the role of regulators of this movement. The paper considers the most general case, when constant and periodic fields are switching on and off asynchronously. Three variants of asynchronous switching on/off are studied in detail. In the first variant, the time intervals (or diapasons) of the actions of the constant and periodic fields do not overlap, in the second — overlap, and in the third — the intervals are putting in each other. The calculations were performed for the sequence of plasmid pTTQ18. The kink motion was modeled by the McLaughlin–Scott equation, and the coefficients of the equation were calculated in a quasi-homogeneous approximation. Numerical experiments showed that constant and periodic fields exert a significant influence on the character of the kink motion and regulate it. So the switching on of a constant field leads to a rapid increase of the kink velocity and to the establishment of a stationary velocity of motion, and the switching on of a periodic field leads to the steady oscillations of the kink with the frequency of the external periodic field. It is shown that the behavior of the kink depends on the mutual arrangement of the diapasons of the action of the external fields. As it turned out, events occurring in one of the two diapasons can affect the events in the other diapason, even when the diapasons are sufficiently far apart. It is shown that the overlapping of the diapasons of action of the constant and periodic fields leads to a significant increase in the path traversed by the kink to a complete stop. Maximal growth of the path is observed when one diapason is putting in each other. In conclusion, the question of how the obtained model results could be related to the most important task of biology — the problem of the mechanisms of regulation of the processes of vital activity of cells and cellular systems is discussed.

    Views (last year): 29. Citations: 1 (RSCI).
  2. Vasiliev I.A., Dubinya N.V., Tikhotskiy S.A., Nachev V.A., Alexeev D.A.
    Numerical model of jack-up rig’s mechanical behavior under seismic loading
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871

    The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.

  3. Popov A.B.
    Nonextensive Tsallis statistics of contract system of prime contractors and subcontractors in defense industry
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1163-1183

    In this work, we analyze the system of contracts made by Russian defense enterprises in the process of state defense order execution. We conclude that methods of statistical mechanics can be applied to the description of the given system. Following the original grand-canonical ensemble approach, we can create the statistical ensemble under investigation as a set of instant snapshots of indistinguishable contracts having individual values. We show that due to government regulations of contract prices the contract system can be described in terms of nonextensive Tsallis statistics. We have found that probability distributions of contract prices correspond to deformed Bose – Einstein distributions obtained using nonextensive Tsallis entropy. This conclusion is true both in the case of the whole set of contracts and in the case of the contracts made by an individual defense company as a seller.

    In order to analyze how deformed Bose – Einstein distributions fit the empirical contract price distributions we compare the corresponding cumulative distribution functions. We conclude that annual distributions of individual sales which correspond to each company’s contract (order) can be used as relevant data for contract price distributions analysis. The empirical cumulative distribution functions for the individual sales ranking of Concern CSRI Elektropribor, one of the leading Russian defense companies, are analyzed for the period 2007–2021. The theoretical cumulative distribution functions, obtained using deformed Bose – Einstein distributions in the case of «rare contract gas» limit, fit well to the empirical cumulative distribution functions. The fitted values for the entropic index show that the degree of nonextensivity of the system under investigations is rather high. It is shown that the characteristic prices of distributions can be estimated by weighing the values of annual individual sales with the escort probabilities. Given that the fitted values of chemical potential are equal to zero, we suggest that «gas of contracts» can be compared to photon gas in which the number of particles is not conserved.

  4. Sukhov E.A., Chekina E.A.
    Software complex for numerical modeling of multibody system dynamics
    Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174

    This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.

    The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.

    The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.

  5. Rukhlenko A.S., Zlobina K.E., Guria G.T.
    Hydrodynamical activation of blood coagulation in stenosed vessels. Theoretical analysis
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 155-183

    The mechanisms of hydrodynamical activation of blood coagulation system are investigated in stenosed vessels for a wide range of Reynolds number values (from 10 up to 500). It is assumed that the vessel wall permeability for procoagulant factors rapidly increases when wall shear stress exceeds specific threshold value. A number of patterns of blood coagulation processes development are described. The influence of blood flow topology changes on activation of blood coagulation is explored. It is established that not only blood flow decrease, but also its increase may promote activation of blood coagulation. It was found that dependence of thrombogenic danger of stenosis on vessel lumen blockage ratio is non-monotonic. The relevance of obtained theoretical results for clinical practice is discussed.

    Views (last year): 2. Citations: 5 (RSCI).
  6. Tsybulin V.G., Khosaeva Z.K.
    Mathematical model of political differentiation under social tension
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012

    We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.

    To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.

    This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.

  7. Chetyrbotskii V.A., Chetyrbotsky A.N.
    Problems of numerical simulation in the dynamics system “soil–plant”
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 445-465

    Modern mathematical models in the dynamics system “soil–plant” are considered. The components of this system are: agricultural plant, microorganisms of the rhizosphere (root zone of plants), the mineral nutrition elements of plants in their mobile and immobile forms. The model of submitted system based on the analysis of the adopted provisions was developed. The construction of system elements allows to display the coordinated dynamics of these elements among themselves. In particular, the dynamics of mineral nutrition elements in plants and the dynamics of their biomass are determined by the current contents in the rhizosphere of mineral fertilizers and organic origin substances (plant roots, leaves, etc.). The immobility of plants spatial distribution and the mobile spatial nature of microorganisms are assumed. This mechanism is determined by diffusion. Mutual relationships between weeds and pests are suggested. The dynamics of the mineral nutrition elements is determined by the peculiarity of sorption in the soil solution, environmental conditions, organic decomposition and fertilizer application. An analytical study for a system where each of the components is represented by only one species (fertilizer, the association of microorganisms and plants) was performed. An adaptation of the wave propagation model in the “resource–consumer” system (Kolmogorov–Petrovsky–Piskunov waves) has been developed for annual agricultural crops. The developed model has been adapted for the growth of Krasnoufimskaya-100 spring wheat in a vessel on peat lowland soil, where nitrogen, phosphorus, and potassium fertilizers were added variably. Sample distributions are plants biomass and the content of mineral nutrition elements in them. The parametric identification of the model and its adequacy was performed. An assessment of the model adequacy showed a good agreement between the model and experimental data.

  8. Skvortsova D.A., Chuvilgin E.L., Smirnov A.V., Romanov N.O.
    Development of a hybrid simulation model of the assembly shop
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379

    In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.

  9. Tokarev A.A., Butylin A.A., Ataullakhanov F.I.
    Platelet transport and adhesion in shear blood flow: the role of erythrocytes
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 185-200

    Hemostatic system serves the organism for urgent repairs of damaged blood vessel walls. Its main components – platelets, the smallest blood cells, – are constantly contained in blood and quickly adhere to the site of injury. Platelet migration across blood flow and their hit with the wall are governed by blood flow conditions and, in particular, by the physical presence of other blood cells – erythrocytes. In this review we consider the main regularities of this influence, available mathematical models of platelet migration across blood flow and adhesion based on "convection-diffusion" PDEs, and discuss recent advances in this field. Understanding of the mechanisms of these processes is necessary for building of adequate mathematical models of hemostatic system functioning in blood flow in normal and pathological conditions.

    Views (last year): 3. Citations: 8 (RSCI).
  10. Lelekov A.S., Trenkenshu R.P.
    Modeling of the macromolecular composition dynamics of microalgae batch culture
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 739-756

    The work focuses on mathematical modeling of light influence mechanisms on macromolecular composition of microalgae batch culture. It is shown that even with a single limiting factor, the growth of microalgae is associated with a significant change in the biochemical composition of the biomass in any part of the batch curve. The well-known qualitative models of microalgae are based on concepts of enzymatic kinetics and do not take into account the possible change of the limiting factor during batch culture growth. Such models do not allow describing the dynamics of the relative content of biochemical components of cells. We proposed an alternative approach which is based on generally accepted two-stage photoautotrophic growth of microalgae. Microalgae biomass can be considered as the sum of two macromolecular components — structural and reserve. At the first stage, during photosynthesis a reserve part of biomass is formed, from which the biosynthesis of cell structures occurs at the second stage. Model also assumes the proportionality of all biomass structural components which greatly simplifies mathematical calculations and experimental data fitting. The proposed mathematical model is represented by a system of two differential equations describing the synthesis of reserve biomass compounds at the expense of light and biosynthesis of structural components from reserve ones. The model takes into account that a part of the reserve compounds is spent on replenishing the pool of macroergs. The rates of synthesis of structural and reserve forms of biomass are given by linear splines. Such approach allows us to mathematically describe the change in the limiting factor with an increase in the biomass of the enrichment culture of microalgae. It is shown that under light limitation conditions the batch curve must be divided into several areas: unlimited growth, low cell concentration and optically dense culture. The analytical solutions of the basic system of equations describing the dynamics of macromolecular biomass content made it possible to determine species-specific coefficients for various light conditions. The model was verified on the experimental data of biomass growth and dynamics of chlorophyll $a$ content of the red marine microalgae Pоrphуridium purpurеum batch culture.

Pages: « first previous next

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"