All issues
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
Most viewed papers
Most cited papers (RSCI)-
Non-uniform cellular genetic algorithms
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 775-780Views (last year): 9. Citations: 3 (RSCI).In this paper, we introduce the concept of non-uniform cellular genetic algorithm, in which a number of parameters that affect the operation of genetic operators is dependent on the location of the cells of a given cellular space. The results of numerical comparison of non-uniform cellular genetic algorithms with the standard genetic algorithms, showing the advantages of the proposed approach while minimizing multimodal functions with a large number of local extrema, are presented. The coarse-grained parallel implementation of the non-uniform algorithms using the technology of MPI is considered.
-
Modeling of axisymmetric deformation processes with taking into account the metal microstructure
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 897-908Views (last year): 9. Citations: 1 (RSCI).The article describes the state of the art computer simulation in the field of metal forming processes, the main problem points of traditional methods were identified. The method, that allows to predict the deformation distribution in the volume of deformable metal with taking into account of microstructure behavioral characteristics in deformation load conditions, was described. The method for optimizing computational resources of multiscale models by using statistical similar representative volume elements (SSRVE) was presented. The modeling methods were tested on the process of single pass drawing of round rod from steel grade 20. In a comparative analysis of macro and micro levels models differences in quantitative terms of the stress-strain state and their local distribution have been identified. Microlevel model also allowed to detect the compressive stresses and strains, which were absent at the macro level model. Applying the SSRVE concept repeatedly lowered the calculation time of the model while maintaining the overall accuracy.
-
Game-theoretic model of coordinations of interests at innovative development of corporations
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 673-684Views (last year): 9. Citations: 6 (RSCI).Dynamic game theoretic models of the corporative innovative development are investigated. The proposed models are based on concordance of private and public interests of agents. It is supposed that the structure of interests of each agent includes both private (personal interests) and public (interests of the whole company connected with its innovative development first) components. The agents allocate their personal resources between these two directions. The system dynamics is described by a difference (not differential) equation. The proposed model of innovative development is studied by simulation and the method of enumeration of the domains of feasible controls with a constant step. The main contribution of the paper consists in comparative analysis of efficiency of the methods of hierarchical control (compulsion or impulsion) for information structures of Stackelberg or Germeier (four structures) by means of the indices of system compatibility. The proposed model is a universal one and can be used for a scientifically grounded support of the programs of innovative development of any economic firm. The features of a specific company are considered in the process of model identification (a determination of the specific classes of model functions and numerical values of its parameters) which forms a separate complex problem and requires an analysis of the statistical data and expert estimations. The following assumptions about information rules of the hierarchical game are accepted: all players use open-loop strategies; the leader chooses and reports to the followers some values of administrative (compulsion) or economic (impulsion) control variables which can be only functions of time (Stackelberg games) or depend also on the followers’ controls (Germeier games); given the leader’s strategies all followers simultaneously and independently choose their strategies that gives a Nash equilibrium in the followers’ game. For a finite number of iterations the proposed algorithm of simulation modeling allows to build an approximate solution of the model or to conclude that it doesn’t exist. A reliability and efficiency of the proposed algorithm follow from the properties of the scenario method and the method of a direct ordered enumeration with a constant step. Some comprehensive conclusions about the comparative efficiency of methods of hierarchical control of innovations are received.
-
On the construction and properties of WENO schemes order five, seven, nine, eleven and thirteen. Part 1. Construction and stability
Computer Research and Modeling, 2016, v. 8, no. 5, pp. 721-753Views (last year): 9. Citations: 1 (RSCI).Currently, different nonlinear numerical schemes of the spatial approximation are used in numerical simulation of boundary value problems for hyperbolic systems of partial differential equations (e. g. gas dynamics equations, MHD, deformable rigid body, etc.). This is due to the need to improve the order of accuracy and perform simulation of discontinuous solutions that are often occurring in such systems. The need for non-linear schemes is followed from the barrier theorem of S. K. Godunov that states the impossibility of constructing a linear scheme for monotone approximation of such equations with approximation order two or greater. One of the most accurate non-linear type schemes are ENO (essentially non oscillating) and their modifications, including WENO (weighted, essentially non oscillating) scemes. The last received the most widespread, since the same stencil width has a higher order of approximation than the ENO scheme. The benefit of ENO and WENO schemes is the ability to maintain a high-order approximation to the areas of non-monotonic solutions. The main difficulty of the analysis of such schemes comes from the fact that they themselves are nonlinear and are used to approximate the nonlinear equations. In particular, the linear stability condition was obtained earlier only for WENO5 scheme (fifth-order approximation on smooth solutions) and it is a numerical one. In this paper we consider the problem of construction and stability for WENO5, WENO7, WENO9, WENO11, and WENO13 finite volume schemes for the Hopf equation. In the first part of this article we discuss WENO methods in general, and give the explicit expressions for the coefficients of the polynomial weights and linear combinations required to build these schemes. We prove a series of assertions that can make conclusions about the order of approximation depending on the type of local solutions. Stability analysis is carried out on the basis of the principle of frozen coefficients. The cases of a smooth and discontinuous behavior of solutions in the field of linearization with frozen coefficients on the faces of the final volume and spectra of the schemes are analyzed for these cases. We prove the linear stability conditions for a variety of Runge-Kutta methods applied to WENO schemes. As a result, our research provides guidance on choosing the best possible stability parameter, which has the smallest effect on the nonlinear properties of the schemes. The convergence of the schemes is followed from the analysis.
-
The development of fracture mathematical models for numerical solution of exploration seismology problems with use of grid-characteristic method
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 911-925Views (last year): 9.The article contains the description of developed mathematical models of fractures which can be used for numerical solution of exploration seismology problems with use of grid-characteristic method on unstructured triangular and tetrahedral meshes. The base of developed models is the concept of infinitely thin fracture. This fracture is represented by contact boundary. Such approach significantly reduces the consumption of computer resources by the absence of the mesh definition inside of fracture necessity. By the other side it lets state the fracture discretely in integration domain, therefore one can observe qualitative new effects which are not available to observe by use of effective models of fractures, actively used in computational seismic.
The main target in the development of models have been getting the most accurate result. Developed models thet can receive the response close to the actual response of the existing fracture in geological environment. We considered fluid-filled fractures, glued and partially glued fractures, and also fractures with dynamical friction force. Fracture behavior determinated by the nature of condition on the border.
Empty fracture was represented as free boundary condition. This condition give us opportunity for total reflection of wave fronts from fracture. Fluid-filling provided the condition for sliding on the border. Under this condition, there was a passage of longitudinal and total reflection of converted waves. For the real fractures, which has unequal distance between the borders has been proposed the model of partially glued fracture. At different points of the fracture's boundary were sat different conditions. Almost the same effect is achieved by using a fracture model of dynamic friction condition. But its disadvantage is the inabillity to specify the proportion of fracture's glued area due to the friction factor can take values from zero to infinity. The model of partially glued fracture is devoid of this disadvantage.
-
Investigation of the relationships of the size and production characteristics of phyto- and zooplankton in the Vistula and Curonian lagoons of the Baltic Sea. Part 1. The statistical analysis of long-term observation data and development of the structure for the mathematical model of the plankton food chain
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 211-246In the paper the statistical relationships between the size and production characteristics of phytoplankton and zooplankton of the Vistula and Curonian lagoons, the Baltic Sea, were investigated. Research phytoplankton and zooplankton within the Russian part of the area of the Vistula and the Curonian lagoon was carried out on the monthly basis (from April to November) within the framework of long-term monitoring program on evaluating of ecological status of the lagoons. The size structure of plankton is the basis for understanding of the development of production processes, mechanisms of formation of the plankton species diversity and functioning of the lagoon ecosystems. As results of the work it was found that the maximum rate of photosynthesis and the integral value of the primary production with a change in cell volume of phytoplankton are changed according to a power law. The result shows that the smaller the size of algal cells in phytoplankton communities the more actively occur metabolism and the more effective they assimilate the solar energy. It is shown that the formation of plankton species diversity in ecosystems of lagoons is closely linked with the size structure of plankton communities and with features of development of the production processes. It is proposed the structure of a spatially homogenous mathematical model of the plankton food chain for the lagoon ecosystems taking into account the size spectrum and the characteristics of phytoplankton and zooplankton. The model parameters are the sizedependent indicators allometrically linked with average volumes of cells and organisms in different ranges of their sizes. In the model the algorithm for changes over time the coefficients of food preferences in the diet of zooplankton was proposed. Developed the size-dependent mathematical model of aquatic ecosystems allows to consider the impact of turbulent exchange on the size structure and temporal dynamics of the plankton food chain of the Vistula and Curonian lagoons. The model can be used to study the different regimes of dynamic behavior of plankton systems depending on the changes in the values of its parameters and external influences, as well as to quantify the redistribution of matter flows in ecosystems of the lagoons.
Keywords: ecosystem, nutrients, phytoplankton, zooplankton, plankton detritus, size structure, the maximum rate of photosynthesis, integrated primary production, zooplankton production, allometric scaling, Shannon index of species diversity, mathematical modeling, ecological simulation model, turbulent exchange.Views (last year): 9. -
On a possible approach to a sport game with discrete time simulation
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 271-279Views (last year): 9.The paper proposes an approach to simulation of a sport game, consisting of a discrete set of separate competitions. According to this approach, such a competition is considered as a random processes, generally — a non-Markov’s one. At first we treat the flow of the game as a Markov’s process, obtaining recursive relationship between the probabilities of achieving certain states of score in a tennis match, as well as secondary indicators of the game, such as expectation and variance of the number of serves to finish the game. Then we use a simulation system, modeling the match, to allow an arbitrary change of the probabilities of the outcomes in the competitions that compose the match. We, for instance, allow the probabilities to depend on the results of previous competitions. Therefore, this paper deals with a modification of the model, previously proposed by the authors for sports games with continuous time.
The proposed approach allows to evaluate not only the probability of the final outcome of the match, but also the probabilities of reaching each of the possible intermediate results, as well as secondary indicators of the game, such as the number of separate competitions it takes to finish the match. The paper includes a detailed description of the construction of a simulation system for a game of a tennis match. Then we consider simulating a set and the whole tennis match by analogy. We show some statements concerning fairness of tennis serving rules, understood as independence of the outcome of a competition on the right to serve first. We perform simulation of a cancelled ATP series match, obtaining its most probable intermediate and final outcomes for three different possible variants of the course of the match.
The main result of this paper is the developed method of simulation of the match, applicable not only to tennis, but also to other types of sports games with discrete time.
-
Views (last year): 9.
It is known that the internal mobility of DNA molecules plays an important role in the functioning of these molecules. This explains the great interest of researchers in studying the internal dynamics of DNA. Complexity, laboriousness and high cost of research in this field stimulate the search and creation of simpler physical analogues, convenient for simulating the various dynamic regimes possible in DNA. One of the directions of such a search is connected with the use of a mechanical analogue of DNA — a chain of coupled pendulums. In this model, pendulums imitate nitrous bases, horizontal thread on which pendulums are suspended, simulates a sugarphosphate chain, and gravitational field simulates a field induced by a second strand of DNA. Simplicity and visibility are the main advantages of the mechanical analogue. However, the model becomes too cumbersome in cases where it is necessary to simulate long (more than a thousand base pairs) DNA sequences. Another direction is associated with the use of an electronic analogue of the DNA molecule, which has no shortcomings of the mechanical model. In this paper, we investigate the possibility of using the Josephson line as an electronic analogue. We calculated the coefficients of the direct and indirect transformations for the simple case of a homogeneous, synthetic DNA, the sequence of which contains only adenines. The internal mobility of the DNA molecule was modeled by the sine-Gordon equation for angular vibrations of nitrous bases belonging to one of the two polynucleotide chains of DNA. The second polynucleotide chain was modeled as a certain average field in which these oscillations occur. We obtained the transformation, allowing the transition from DNA to an electronic analog in two ways. The first includes two stages: (1) the transition from DNA to the mechanical analogue (a chain of coupled pendulums) and (2) the transition from the mechanical analogue to the electronic one (the Josephson line). The second way is direct. It includes only one stage — a direct transition from DNA to the electronic analogue.
-
Movement of sediment over periodic bed
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 47-60Views (last year): 9.The movement of bed load along the closed conduit can lead to a loss of stability of the bed surface, when bed waves arise at the bed of the channel. Investigation of the development of bed waves is associated with the possibility of determining of the bed load nature along the bed of the periodic form. Despite the great attention of many researchers to this problem, the question of the development of bed waves remains open at the present time. This is due to the fact that in the analysis of this process many researchers use phenomenological formulas for sediment transport in their work. The results obtained in such models allow only assess qualitatly the development of bed waves. For this reason, it is of interest to carry out an analysis of the development of bed waves using the analytical model for sediment transport.
The paper proposed two-dimensional profile mathematical riverbed model, which allows to investigate the movement of sediment over a periodic bed. A feature of the mathematical model is the possibility of calculating the bed load transport according to an analytical model with the Coulomb–Prandtl rheology, which takes into account the influence of bottom surface slopes, bed normal and tangential stresses on the movement of bed material. It is shown that when the bed material moves along the bed of periodic form, the diffusion and pressure transport of bed load are multidirectional and dominant with respect to the transit flow. Influence of the effects of changes in wave shape on the contribution of transit, diffusion and pressure transport to the total sediment transport has been studied. Comparison of the received results with numerical solutions of the other authors has shown their good qualitative initiation.
-
Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501Views (last year): 9.Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.
In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"