All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Stochastic model of voter dynamics in online media
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 979-997In the present article we explore the process of changing the level of approval of a political leader under the influence of the processes taking place in online platforms (social networks, forums, etc.). The driver of these changes is the interaction of users, through which they can exchange opinions with each other and formulate their position in relation to the political leader. In addition to interpersonal interaction, we will consider such factors as the information impact, expressed in the creation of an information flow with a given power and polarity (positive or negative, in the context of influencing the image of a political leader), as well as the presence of a group of agents (opinion leaders), supporting the leader, or, conversely, negatively affecting its representation in the media space.
The mathematical basis of the presented research is the Kirman model, which has its roots in biology and initially found its application in economics. Within the framework of this model it is considered that each user is in one of the two possible states, and a Markov jump process describing transitions between these states is given. For the problem under consideration, these states are 0 or 1, depending on whether a particular agent is a supporter of a political leader or not. For further research, we find its diffusional approximation, known as the Jacoby process. With the help of spectral decomposition for the infinitesimal operator of this process we have an opportunity to find an analytical representation for the transition probability density.
Analyzing the probabilities obtained in this way, we can assess the influence of individual factors of the model: the power and direction of the information flow, available to online users and relevant to the tasks of rating formation, as well as the number of supporters or opponents of the politician. Next, using the found eigenfunctions and eigenvalues, we derive expressions for the evaluation of conditional mathematical expectations of a politician’s rating, which can serve as a basis for building forecasts that are important for the formation of a strategy of representing a political leader in the online environment.
-
A framework for medical image segmentation based on measuring diversity of pixel’s intensity utilizing interval approach
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1059-1066Segmentation of medical image is one of the most challenging tasks in analysis of medical image. It classifies the organs pixels or lesions from medical images background like MRI or CT scans, that is to provide critical information about the human organ’s volumes and shapes. In scientific imaging field, medical imaging is considered one of the most important topics due to the rapid and continuing progress in computerized medical image visualization, advances in analysis approaches and computer-aided diagnosis. Digital image processing becomes more important in healthcare field due to the growing use of direct digital imaging systems for medical diagnostics. Due to medical imaging techniques, approaches of image processing are now applicable in medicine. Generally, various transformations will be needed to extract image data. Also, a digital image can be considered an approximation of a real situation includes some uncertainty derived from the constraints on the process of vision. Since information on the level of uncertainty will influence an expert’s attitude. To address this challenge, we propose novel framework involving interval concept that consider a good tool for dealing with the uncertainty, In the proposed approach, the medical images are transformed into interval valued representation approach and entropies are defined for an image object and background. Then we determine a threshold for lower-bound image and for upper-bound image, and then calculate the mean value for the final output results. To demonstrate the effectiveness of the proposed framework, we evaluate it by using synthetic image and its ground truth. Experimental results showed how performance of the segmentation-based entropy threshold can be enhanced using proposed approach to overcome ambiguity.
-
Extracting knowledge from text messages: overview and state-of-the-art
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1291-1315In general, solving the information explosion problem can be delegated to systems for automatic processing of digital data. These systems are intended for recognizing, sorting, meaningfully processing and presenting data in formats readable and interpretable by humans. The creation of intelligent knowledge extraction systems that handle unstructured data would be a natural solution in this area. At the same time, the evident progress in these tasks for structured data contrasts with the limited success of unstructured data processing, and, in particular, document processing. Currently, this research area is undergoing active development and investigation. The present paper is a systematic survey on both Russian and international publications that are dedicated to the leading trend in automatic text data processing: Text Mining (TM). We cover the main tasks and notions of TM, as well as its place in the current AI landscape. Furthermore, we analyze the complications that arise during the processing of texts written in natural language (NLP) which are weakly structured and often provide ambiguous linguistic information. We describe the stages of text data preparation, cleaning, and selecting features which, alongside the data obtained via morphological, syntactic, and semantic analysis, constitute the input for the TM process. This process can be represented as mapping a set of text documents to «knowledge». Using the case of stock trading, we demonstrate the formalization of the problem of making a trade decision based on a set of analytical recommendations. Examples of such mappings are methods of Information Retrieval (IR), text summarization, sentiment analysis, document classification and clustering, etc. The common point of all tasks and techniques of TM is the selection of word forms and their derivatives used to recognize content in NL symbol sequences. Considering IR as an example, we examine classic types of search, such as searching for word forms, phrases, patterns and concepts. Additionally, we consider the augmentation of patterns with syntactic and semantic information. Next, we provide a general description of all NLP instruments: morphological, syntactic, semantic and pragmatic analysis. Finally, we end the paper with a comparative analysis of modern TM tools which can be helpful for selecting a suitable TM platform based on the user’s needs and skills.
-
Software complex for numerical modeling of multibody system dynamics
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 161-174This work deals with numerical modeling of motion of the multibody systems consisting of rigid bodies with arbitrary masses and inertial properties. We consider both planar and spatial systems which may contain kinematic loops.
The numerical modeling is fully automatic and its computational algorithm contains three principal steps. On step one a graph of the considered mechanical system is formed from the userinput data. This graph represents the hierarchical structure of the mechanical system. On step two the differential-algebraic equations of motion of the system are derived using the so-called Joint Coordinate Method. This method allows to minimize the redundancy and lower the number of the equations of motion and thus optimize the calculations. On step three the equations of motion are integrated numerically and the resulting laws of motion are presented via user interface or files.
The aforementioned algorithm is implemented in the software complex that contains a computer algebra system, a graph library, a mechanical solver, a library of numerical methods and a user interface.
-
Modeling the indirect impact of rhinoceros beetle control on red palm weevils in coconut plantations
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 737-752In this paper, a mathematical model is developed and analyzed to assess the indirect impact of controlling rhinoceros beetles on red palm weevil populations in coconut plantations. The model consists of a system of six non-linear ordinary differential equations (ODEs), capturing the interactions among healthy and infected coconut trees, rhinoceros beetles, red palm weevils, and the oryctes virus. The model ensures biological feasibility through positivity and boundedness analysis. The basic reproduction number $R_0$ is derived using the next-generation matrix method. Both local and global stability of the equilibrium points are analyzed to determine conditions for pest persistence or eradication. Sensitivity analysis identifies the most influential parameters for pest management. Numerical simulations reveal that by effectively controlling the rhinoceros beetle population particularly through infection with the oryctes virus, the spread of the red palm weevil can also be suppressed. This indirect control mechanism helps to protect the coconut tree population more efficiently and supports sustainable pest management in coconut plantations.
-
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
-
Statistically fair price for the European call options according to the discreet mean/variance model
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874Views (last year): 1.We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.
-
Fuzzy modeling the mechanism of transmitting panic state among people with various temperament species
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1079-1092A mass congestion of people always represents a potential danger and threat for their lives. In addition, every year in the world a very large number of people die because of the crush, the main cause of which is mass panic. Therefore, the study of the phenomenon of mass panic in view of her extreme social danger is an important scientific task. Available information, about the processes of her occurrence and spread refers to the category inaccurate. Therefore, the theory of fuzzy sets has been chosen as a tool for developing a mathematical model of the mechanism of transmitting panic state among people with various temperament species.
When developing an fuzzy model, it was assumed that panic, from the epicenter of the shocking stimulus, spreads among people according to the wave principle, passing at different frequencies through different environments (types of human temperament), and is determined by the speed and intensity of the circular reaction of the mechanism of transmitting panic state among people. Therefore, the developed fuzzy model, along with two inputs, has two outputs — the speed and intensity of the circular reaction. In the block «Fuzzyfication», the degrees of membership of the numerical values of the input parameters to fuzzy sets are calculated. The «Inference» block at the input receives degrees of belonging for each input parameter and at the output determines the resulting function of belonging the speed of the circular reaction and her derivative, which is a function of belonging for the intensity of the circular reaction. In the «Defuzzyfication» block, using the center of gravity method, a quantitative value is determined for each output parameter. The quality assessment of the developed fuzzy model, carried out by calculating of the determination coefficient, showed that the developed mathematical model belongs to the category of good quality models.
The result obtained in the form of quantitative assessments of the circular reaction makes it possible to improve the quality of understanding of the mental processes occurring during the transmission of the panic state among people. In addition, this makes it possible to improve existing and develop new models of chaotic humans behaviors. Which are designed to develop effective solutions in crisis situations, aimed at full or partial prevention of the spread of mass panic, leading to the emergence of panic flight and the appearance of human casualties.
-
Parameter identification of viscoelastic cell models based on force curves and wavelet transform
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1653-1672Mechanical properties of eukaryotic cells play an important role in life cycle conditions and in the development of pathological processes. In this paper we discuss the problem of parameters identification and verification of viscoelastic constitutive models based on force spectroscopy data of living cells. It is proposed to use one-dimensional continuous wavelet transform to calculate the relaxation function. Analytical calculations and the results of numerical simulation are given, which allow to obtain relaxation functions similar to each other on the basis of experimentally determined force curves and theoretical stress-strain relationships using wavelet differentiation algorithms. Test examples demonstrating correctness of software implementation of the proposed algorithms are analyzed. The cell models are considered, on the example of which the application of the proposed procedure of identification and verification of their parameters is demonstrated. Among them are a structural-mechanical model with parallel connected fractional elements, which is currently the most adequate in terms of compliance with atomic force microscopy data of a wide class of cells, and a new statistical-thermodynamic model, which is not inferior in descriptive capabilities to models with fractional derivatives, but has a clearer physical meaning. For the statistical-thermodynamic model, the procedure of its construction is described in detail, which includes the following. Introduction of a structural variable, the order parameter, to describe the orientation properties of the cell cytoskeleton. Setting and solving the statistical problem for the ensemble of actin filaments of a representative cell volume with respect to this variable. Establishment of the type of free energy depending on the order parameter, temperature and external load. It is also proposed to use an oriented-viscous-elastic body as a model of a representative element of the cell. Following the theory of linear thermodynamics, evolutionary equations describing the mechanical behavior of the representative volume of the cell are obtained, which satisfy the basic thermodynamic laws. The problem of optimizing the parameters of the statisticalthermodynamic model of the cell, which can be compared both with experimental data and with the results of simulations based on other mathematical models, is also posed and solved. The viscoelastic characteristics of cells are determined on the basis of comparison with literature data.
-
Mathematical modeling of the optimal market of competing goods in conditions of deliveries lags
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 431-450Views (last year): 1. Citations: 3 (RSCI).The nonlinear restrictive (with restrictions of the inequalities type) dynamic mathematical model of the committed competition vacant market of many goods in conditions of the goods deliveries time-lag and of the linear dependency of the demand vector from the prices vector is offered. The problem of finding of prices and deliveries of goods into the market which are optimal (from seller’s profit standpoint) is formulated. It is shown the seller’s total profit maximum is expressing by the continuous piecewise smooth function of vector of volumes of deliveries with breakup of the derivative on borders of zones of the goods deficit, of the overstocking and of the dynamic balance of demand and offer of each of goods. With use of the predicate functions technique the computing algorithm of optimization of the goods deliveries into the market is built.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




