Результаты поиска по 'глия':
Найдено статей: 2
  1. Крючечникова А.Н., Левдик Т.Г., Браже А.Р.
    Моделирование морфологии астроцитов с применением алгоритма колонизации пространства
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 465-481

    В настоящей работе рассматривается феноменологический алгоритм генерации морфологии глиальных клеток мозга — астроцитов, основанный на морфометрических данных протоплазматических астроцитов и общих тенденциях развития данного типа клеток in vivo, описанных в литературе. Мы адаптировали алгоритм пространственной колонизации (Space Colonization Algorithm, SCA) для процедурной генерации полной астроцитарной морфологии. Используемые в генерации аттракторные точки распределялись в пространственном объеме в соответствии с плотностью распределения синапсов в ткани гиппокампа на первой неделе постнатального развития мозга крысы. Нами были проанализированы и сопоставлены данные реконструкций астроцитарных морфологий на разных этапах развития мозга с использованием таких методик и параметров, как анализ Шолля, число точек ветвления, число терминалей, общая длина дерева и максимальный порядок ветвления. Используя данные морфометрического анализа протоплазматических астроцитов животных разных возрастов, были подобраны необходимые параметры генерации для получения наиболее реалистичных трехмерных моделей морфологии клеток. Мы показали, что разработанный нами алгоритм позволяет не только получить геометрию отдельных клеток, например, для задач вычислительной биологии, но и воссоздать феномен доменной организации клеточной популяции. Доменная организация в ходе генерации морфологий возникает из-за конкуренции клеток за территорию и присвоения их отростками уникальных аттракторных точек, которые становятся недоступными для других клеток и их отростков. Кроме того, нами было разработано дополнение оригинального алгоритма, позволяющее производить генерацию морфологии в две фазы, имитируя двухстадийное развитие структуры астроцитов на первой и третьей-четвертой неделях постнатального развития мозга крыс. Для достижения этого результата мы прибегаем к введению двух типов аттракторов, чтобы разделить две различные стратегии роста во времени: быстрое исследование пространства слабоветвящимися отростками и созревание сложной морфологии за счет обильного ветвления. Мы предполагаем, что модификация алгоритма с введением динамической генерации аттракторов может объяснить процесс формирования тонких структур астроцитарной клетки.

    Kriuchechnikova A.N., Levdik T.G., Brazhe A.R.
    Modelling of astrocyte morphology with space colonization algorithm
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 465-481

    We examine a phenomenological algorithm for generating morphology of astrocytes, a major class of glial brain cells, based on morphometric data of rat brain protoplasmic astrocytes and observations of general cell development trends in vivo, based on current literature. We adapted the Space Colonization Algorithm (SCA) for procedural generation of astrocytic morphology from scratch. Attractor points used in generation were spatially distributed in the model volume according to the synapse distribution density in the rat hippocampus tissue during the first week of postnatal brain development. We analyzed and compared astrocytic morphology reconstructions at different brain development stages using morphometry estimation techniques such as Sholl analysis, number of bifurcations, number of terminals, total tree length, and maximum branching order. Using morphometric data from protoplasmic astrocytes of rats at different ages, we selected the necessary generation parameters to obtain the most realistic three-dimensional cell morphology models. We demonstrate that our proposed algorithm allows not only to obtain individual cell geometry but also recreate the phenomenon of tiling domain organization in the cell populations. In our algorithm tiling emerges due to the cell competition for territory and the assignment of unique attractor points to their processes, which then become unavailable to other cells and their processes. We further extend the original algorithm by splitting morphology generation in two phases, thereby simulating astrocyte tree structure development during the first and third-fourth weeks of rat postnatal brain development: rapid space exploration at the first stage and extensive branching at the second stage. To this end, we introduce two attractor types to separate two different growth strategies in time. We hypothesize that the extended algorithm with dynamic attractor generation can explain the formation process of fine astrocyte cell structures and maturation of astrocytic arborizations.

  2. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Kovalenko S.Yu., Yusubalieva G.M.
    Survival task for the mathematical model of glioma therapy with blood-brain barrier
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123

    The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.

    Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.

    The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.

    The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.

    Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.

    Views (last year): 14.

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"