Результаты поиска по 'динамика взаимодействия':
Найдено статей: 124
  1. Говорухин В.Н., Филимонова А.М.
    Расчет плоских геофизических течений невязкой несжимаемой жидкости бессеточно-спектральным методом
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 413-426

    Предложен бессеточно-спектральный метод расчета динамики плоских вихревых течений невязкой несжимаемой жидкости в геофизических приближениях с учетом планетарного вращения. Математически задача описывается системой двух уравнений в частных производных относительно функций тока и завихренности с различными граничными условиями (замкнутая область течения и периодические условия). В основе метода лежат следующие положения: поле завихренности задано значениями на множестве частиц; функция завихренности приближается с помощью кусочно-непрерывной аппроксимации кубическими полиномами от двух пространственных переменных; коэффициенты полиномов находятся методом наименьших квадратов; функция тока на каждом временном шаге находится методом Бубнова–Галёркина; динамика жидких частиц рассчитывается псевдосимплектическим методом Рунге–Кутты. В статье впервые подробно описан вариант метода для периодических граничных условий. Адекватность численной схемы проверена на тестовых примерах.

    В численном эксперименте исследована динамика конфигурации четырех круглых вихревых пятен с одинаковымр адиусоми постоянной завихренностью, расположенных в вершинах квадрата с центром в полюсе. Изучено влияние планетарного вращения и радиуса пятен на динамику и формирование вихревых структур. Показано, что в случае достаточно большого расстояния между границами вихревых пятен их динамика близка к поведению точечных вихрей с той же интенсивностью. При росте радиуса возникает взаимодействие между вихрями, которое приводит к их слиянию. В зависимости от направления вращения сила Кориолиса может усиливать или замедлять процессы взаимодействия и перемешивания вихрей. Так, вихревая структура из четырех вихрей при небольших радиусах пятен стабилизируется в случае сонаправленности собственного и планетарного вращений и разрушается на меньших временах при противоположных направлениях. При больших радиусах вихревая структура не стабилизируется.

    Govorukhin V.N., Filimonova A.M.
    Numerical calculation of planar geophysical flows of an inviscid incompressible fluid by a meshfree-spectral method
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 413-426

    In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov –Galerkin method at each time step.

    The dynamics of fluid particles is calculated by pseudo-symplectic Runge –Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.

    Views (last year): 16.
  2. Сосин А.В., Сидоренко Д.А., Уткин П.С.
    Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540

    Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.

    Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.

    Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.

    Sosin A.V., Sidorenko D.A., Utkin P.S.
    Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540

    The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.

    Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.

    The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.

  3. Быков Н.В.
    Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058

    Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.

    Bykov N.V.
    A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058

    The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.

  4. Ситников С.С., Черемисин Ф.Г.
    Расчет структуры ударной волны в газовой смеси на основе уравнения Больцмана с контролем точности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1107-1123

    В работе проведено исследование структуры ударной волны в бинарной газовой смеси на основе прямого решения кинетического уравнения Больцмана. Для вычисления интеграла столкновений в кинетическом уравнении используется консервативный проекционный метод. Детально описаны применяемые расчетные формулы и методика вычислений. В качестве потенциала взаимодействия молекул используется модель твердых сфер. Численное моделирование проводится с использованием разработанной программно-моделирующей среды, которая позволяет исследовать стационарные и нестационарные течения газовых смесей в различных режимах и для произвольной геометрии задачи. Моделирование выполняется на системе кластерной архитектуры. За счет использования технологий распараллеливания кода достигается значительное ускорение вычислений. С фиксированной точностью, контролируемой параметрами моделирования, получены распределения макроскопических величин компонентов смеси по фронту ударной волны. Расчеты выполнены для различных соотношений молекулярных масс и чисел Маха. Достигнута общая точность моделирования не менее 1% по локальным значениям концентрации и температуры и 3% по ширине фронта ударной волны. Проведено сравнение полученных результатов с существующими расчетными данными. Представленные в данной работе результаты имеют теоретическое значение, а также могут служить в качестве тестового расчета, поскольку они получены с использованием точного уравнения Больцмана.

    Sitnikov S.S., Tcheremissine F.G.
    Computation of a shock wave structure in a gas mixture based on the Boltzmann equation with accuracy control
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1107-1123

    In this paper, the structure of a shock wave in a binary gas mixture is studied on the basis of direct solution of the Boltzmann kinetic equation. The conservative projection method is used to evaluate the collision integral in the kinetic equation. The applied evaluation formulas and numerical methods are described in detail. The model of hard spheres is used as an interaction potential of molecules. Numerical simulation is performed using the developed simulation environment software, which makes it possible to study both steady and non-steady flows of gas mixtures in various flow regimes and for an arbitrary geometry of the problem. Modeling is performed on a cluster architecture. Due to the use of code parallelization technologies, a significant acceleration of computations is achieved. With a fixed accuracy controlled by the simulation parameters, the distributions of macroscopic characteristics of the mixture components through the shock wave front were obtained. Computations were conducted for various ratios of molecular masses and Mach numbers. The total accuracy of at least 1% for the local values of molecular density and temperature and 3% for the shock front width was achieved. The obtained results were compared with existing computation data. The results presented in this paper are of theoretical significance, and can serve as a test computation, since they are obtained using the exact Boltzmann equation.

  5. Конюхов А.В., Ростилов Т.А.
    Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71

    На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).

    Konyukhov A.V., Rostilov T.A.
    Numerical simulation of converging spherical shock waves with symmetry violation
    Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71

    The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).

  6. Фахретдинов М.И., Екомасов Е.Г.
    Локализованные волны уравнения $\varphi^4$ в модели с двумя протяженными примесями
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 437-449

    В данной работе рассматривается взаимодействие кинка уравнения $\varphi^4$ с двумя протяженными одинаковыми примесями. Протяженная примесь описывается с помощью функции прямоугольного вида. Анализируется случай притягивающей примеси. С помощью аналитических методов рассматривается случай малых амплитуд локализованных волн, когда возможно провести линеаризацию уравнений движения. Для численного решения использовался метод прямых для уравнений в частных производных. Для нахождения частот колебаний, локализованных на примесях волн, используется дискретное преобразование Фурье. Кинк запускался в направлении примесей с разными начальными скоростями. Изменялось также расстояние между двумя примесями. Показано, что при взаимодействии кинка с примесями на них возбуждаются долгоживущие локализованные волны бризерного типа. Исследована их структура и связанная динамика. Определено, как, изменяя параметры примесей и расстояние между ними, можно управлять типом и динамическими параметрами связанных колебаний, локализованных на примесях волн. Найдены возможные решения в виде синфазных, антифазных колебаний, в виде биений. Колебания локализованных волн происходят с излучением волн малой амплитуды. Спектр этих излучений состоит из двух частот. Первая приближенно равна $\sqrt{2}$, что соответствует величине частоты для хвоста воблингбризера уравнения $\varphi^4$. Вторая приближенно равна удвоенной частоте колебаний примесных мод. Найдено (как аналитически, так и численно) наличие двух возможных частот для связанных локализованных колебаний. Показано, что частоты сильно зависят от расстояния между примесями. С увеличением расстояния между примесями частоты сливаются в одну — частоту, полученную для случая одиночной примеси. Найденные численно и аналитически зависимости частот от расстояния между примесями хорошо совпадают для больших расстояний, когда взаимодействие между примесями слабое, и начинают заметно отличаться при малых расстояниях, когда взаимодействие между примесями сильное. Аналитическое значение величин полученных частот всегда больше численных. Показано, что зависимость амплитуды локализованных волн от начальной скорости кинка имеет несколько минимумов и максимумов.

    Fakhretdinov M.I., Ekomasov E.G.
    Localized waves of the $\varphi^4$ equation in models with two extended impurities
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 437-449

    In this paper, we consider the interaction of a kink of the $\varphi^4$ equation with two identical extended impurities. An extended impurity is described using a rectangular function. The case of an attractive impurity is analyzed. Using analytical methods, we consider the case of small amplitudes of localized waves, when it is possible to linearize the equations of motion. For the numerical solution, the method of lines for partial differential equations was used. To find the oscillation frequencies of waves localized on impurities, the discrete Fourier transform is used. The kink was launched in the direction of the impurities with different initial velocities. The distance between the two impurities was also varied. It is shown that when a kink interacts with impurities, long-lived localized breather-type waves are excited on them. Their structure and coupled dynamics are investigated. It is determined how, by changing the parameters of the impurities and the distance between them, it is possible to control the type and dynamic parameters of the coupled oscillations of the waves localized on the impurities. Possible solutions in the form of in-phase, antiphase oscillations, in the form of beats are found. The oscillations of localized waves occur with the emission of small-amplitude waves. The spectrum of these emissions consists of two frequencies. The first is approximately equal to $\sqrt{2}$, which corresponds to the frequency value for the wobbling breather tail of the $\varphi^4$ equation. The second is approximately equal to the doubled frequency of impurity mode oscillations. The presence of two possible frequencies for coupled localized oscillations is found both analytically and numerically. It is shown that the frequencies strongly depend on the distance between impurities. With increasing distance between impurities, the frequencies merge into one — frequency obtained for the case of a single impurity. The dependences of the frequencies on the distance between impurities found numerically and analytically coincide well for large distances, when the interaction between impurities is weak, and begin to differ noticeably at small distances, when the interaction between impurities is strong. The analytical value of the obtained frequencies is always greater than the numerical ones. It is shown that the dependence of the amplitude of localized waves on the initial kink velocity has several minima and maxima.

  7. Попова А.А., Попов В.С.
    Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600

    В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.

    Popova A.A., Popov V.S.
    Modeling of nonlinear aeroelastic oscillations of a channel wall interacting with a pulsating viscous gas layer
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 583-600

    The mathematical model for aeroelastic oscillations of a narrow channel wall with a nonlinear-elastic suspension and interacting with a pulsating viscous gas layer is proposed. Within the framework of this model, the aeroelastic response of the channel wall and its phase response were determined and investigated. The authors simultaneously studied the influence of the nonlinear stiffness elastic suspension of the wall, compressibility and dissipative properties of gas, as well as the inertia of its motion on the wall oscillations. The model was elaborated based on the formulation and solution of the initial boundary-value plane problem of mathematical physics. The problem governing equations include the equations of dynamics for barotropic viscous gas, equation of dynamics for the rigid wall as the spring-mass nonlinear oscillator. Using the perturbation method, the asymptotic analysis of the problem was carried out. The solution of the equations of dynamics for the thin layer of viscous gas was obtained by the iteration method. As a result, the law of gas pressure distribution in the channel was determined and the initial problem of aeroelasticity was reduced to the study of the generalized Duffing equation. Its solution was realized by the harmonic balance method, which allowed us to determine the aeroelastic and phase responses of the channel wall in the form of implicit functions. The numerical study of these responses was carried out to evaluate the influence for inertia of gas motion and its compressibility, as well as a comparison of the results obtained with the special cases of creeping motion of viscous gas and incompressible viscous fluid. The results of this study have shown the importance of simultaneous consideration of compressibility and inertia of viscous gas motion when modeling aeroelastic oscillations of the considered channel wall.

  8. Демлов П., Люнгфириа Х., Мюллер С.К.
    Эффекты воздействия электрического поля на химические структуры
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718

    Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.

    Dähmlow P., Luengviria C., Müller S.C.
    Electric field effects in chemical patterns
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718

    Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.

    Views (last year): 8.
  9. Хавинсон М.Ю., Кулаков М.П., Фрисман Е.Я.
    Математическое моделирование динамики численности возрастных групп занятых на примере южных регионов Дальнего Востока России
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 787-801

    Предлагается нелинейная математическая модель динамики численности занятого населения разных возрастных групп с учетом их взаимодействий, которые рассматриваются по аналогии с популяционными взаимодействиями (конкуренция, дискриминация, помощь, угнетение и т. п.). Под взаимодействиями понимаются такие обобщенные социально-экономические механизмы, которые вызывают взаимосвязанные изменения численности занятых различных возрастных групп. Рассматриваются три возрастные группы занятого населения: молодые специалисты (15–29 лет), с опытом работы (30–49 лет), работники предпенсионного и пенсионного возраста (50 и старше). На основе статистических данных выполнена оценка параметров предложенной модели для южных регионов Дальневосточного федерального округа (ДФО). Анализ модели и модельных сценариев позволяет заключить, что наблюдаемые колебания численности разновозрастных работников на фоне стабильной общей численности занятого населения могут быть следствием сложных взаимодействий этих групп между собой. Вычислительные эксперименты, проведенные при полученных значениях параметров, позволили рассчитать темпы снижения численности и старения занятого населения, а также определить характер взаимодействий между возрастными группами занятых, прямо не отраженный в статистических данных. Установлено, что в целом по ДФО занятые 50 лет и старше находятся с работающей молодежью до 29 лет в отношениях дискриминации, занятые до 29 лет и 30–49 лет — в отношениях партнерства. Наиболее развитые регионы (Приморский край и Хабаровский край) демонстрируют «равномерную» конкуренцию среди разных возрастных групп занятого населения. Для Приморского края удалось выявить эффект перемешивания сценариев динамики, что характерно для систем, находящихся в состоянии структурной перестройки. Этот эффект выражается в том, что при значительном уменьшении миграционного притока занятых 30–49 лет будут формироваться длинные циклы занятости. Кроме того, изменение миграции сопровождается сменой типа взаимодействия — с дискриминации старшего поколения средним на дискриминацию среднего возраста старшим. Для менее развитых регионов Дальнего Востока (Амурская, Магаданская и Еврейская автономная области) характерны более низкие значения миграционного сальдо почти всех возрастов, а также дискриминация со стороны занятой молодежи до 29 лет других возрастных групп и дискриминация занятыми 30–49 лет старшего поколения.

    Khavinson M.J., Kulakov M.P., Frisman Y.Y.
    Mathematical modeling of the age groups of employed peoples by the example of the southern regions of the Russian Far East
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 787-801

    The article focuses on a nonlinear mathematical model that describes the interaction of the different age groups of the employed population. The interactions are treated by analogy with population relationship (competition, discrimination, assistance, oppression, etc). Under interaction of peoples we mean the generalized social and economic mechanisms that cause related changes in the number of employees of different age groups. Three age groups of the employed population are considered. It is young specialists (15–29 years), workers with experience (30–49 years), the employees of pre-retirement and retirement age (50 and older). The estimation of model’s parameters for the southern regions of the Far Eastern Federal District (FEFD) is executed by statistical data. Analysis of model scenarios allows us to conclude the observed number fluctuations of the different ages employees on the background of a stable total employed population may be a consequence of complex interactions between these groups of peoples. Computational experiments with the obtained values of the parameters allowed us to calculate the rate of decline and the aging of the working population and to determine the nature of the interaction between the age groups of employees that are not directly as reflected in the statistics. It was found that in FEFD the employed of 50 years and older are discriminated against by the young workers under 29, employed up to 29 and 30–49 years are in a partnership. It is shown in most developed regions (Primorsky and Khabarovsk Krai) there is “uniform” competition among different age groups of the employed population. For Primorsky Krai we were able to identify the mixing effect dynamics. It is a typical situation for systems in a state of structural adjustment. This effect is reflected in the fact the long cycles of employed population form with a significant decrease in migration inflows of employees 30–49 years. Besides, the change of migration is accompanied by a change of interaction type — from employment discrimination by the oldest of middle generation to discrimination by the middle of older generation. In less developed regions (Amur, Magadan and Jewish Autonomous Regions) there are lower values of migration balance of almost all age groups and discrimination by young workers up 29 years of other age groups and employment discrimination 30–49 years of the older generation.

    Views (last year): 4. Citations: 3 (RSCI).
  10. Никонов Э.Г., Павлуш М., Поповичова М.
    Двумерное макроскопическое и микроскопическое моделирование процессов взаимодействия воды и пористых материалов
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 77-86

    В различных областях науки, техники, защиты окружающей среды, в строительстве актуальными являются вопросы изучения процессов взаимодействия пористых материалов с веществами, находящимися в различных агрегатных состояниях. Особенно актуальными с точки зрения экологии и защиты окружающей среды являются исследования процессов взаимодействия пористых материалов с водой в жидкой и газообразной фазе. Поскольку в одном моле воды содержится 6.022140857 · 1023 молекул H2O, для описания свойств, например, водяного пара в поре в основном используются макроскопические подходы, рассматривающие водяной пар как сплошную среду в рамках аэродинамики. В данной работе построена и использовалась для моделирования макроскопическая двумерная диффузионная модель [Bitsadze, Kalinichenko, 1980] поведения водяного пара внутри изолированной поры. Наряду с макроскопической моделью в работе предложена микроскопическая модель поведения водяного пара внутри изолированной поры, построенная в рамках молекулярно-динамического подхода [Gould et al., 2005]. В данной модели на основе классической механики Ньютона описывается движение каждой молекулы воды, взаимодействующей как с другими молекулами воды, так и со стенками поры. Рассматривается эволюция системы «водяной пар – пора» с течением времени. В зависимости от внешних по отношению к поре условий система эволюционирует к различным состояниям равновесия, которые характеризуются различными значениями макроскопических характеристик, таких как температура, плотность, давление. Сравнение результатов молекулярно-динамического моделирования с результатами вычислений на основе макроскопической диффузионной модели и экспериментальными данными позволяет сделать вывод о необходимости сочетания макроскопического и микроскопического подхода для адекватного и более точного описания процессов взаимодействия водяного пара с пористыми материалами.

    Nikonov E.G., Pavlus M., Popovičová M.
    2D microscopic and macroscopic simulation of water and porous material interaction
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86

    In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.

    Views (last year): 10.
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"