All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.
Ключевые слова: клеточные автоматы, транспортные потоки, беспилотные автомобили, мультиагентные системы, компьютерное моделирование, гетерогенный трафик, интеллектуальные транспортные системы, кластерное движение.
A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.
-
Метод гибридных сеток в задачах внешней и внутренней газовой динамики
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 543-565На основе метода моделирования задач газовой динамики с помощью системы сеток реализован алгоритм для решения нестационарной задачи с движущими телами. Алгоритм учитывает перемещение и вращение тел по заданному закону движения. Алгоритм применен для исследования обтекания бесконечной решетки, составленной из цилиндров с эллиптическим сечением, которые либо перемещаются поперек потока, либо вращаются с изменением угла атаки. Для моделирования обтекания тел с острой кромкой, характерных для профилей турбомашин, реализован алгоритм построения сетки типа С с включением некоторой области за профилем. Программа моделирования течения около профиля реализована в рамках моделей уравнений Эйлера, уравнений Навье – Стокса в приближении тонкого слоя с ламинарной вязкостью и турбулентной вязкостью в рамках алгебраической модели вязкости. Также программа была адаптирована для решения задач внутренней газодинамики турбомашин. Для этого была изменена методика задания граничных условий на входе и выходе из расчетной области со скорости на перепад давления, а также на боковых границах со свободного потока на периодичность. Это позволило моделировать течение газа в межлопаточных каналах компрессоров и турбин газотурбинных двигателей. Для отработки алгоритма были проведены серии расчетов аэродинамических параметров нескольких турбинных решеток на различных дозвуковых и сверхзвуковых режимах и их сравнение с экспериментом. Расчеты параметров турбинных решеток были проведены в рамках модели невязкого и вязкого газа. Сравнение расчета и эксперимента проводилось по распределению параметров газа около профиля, а также по потерям энергии потока в решетке. Расчеты показали применимость и корректность работы программы для решения данного класса задач. Для тестирования программы на задачах внешней дозвуковой аэродинамики были выполнены расчеты аэродинамических характеристик изолированного аэродинамического профиля в невозмущенном потоке. Полученные результаты позволяют утверждать о применимости метода гибридных сеток к различным классам задач прикладной газовой динамики.
Ключевые слова: моделирование, аэродинамические характеристики, внутренняя аэродинамика, обтекание, турбомашины, лопатки, газовые турбины, газотурбинные двигатели, ударные волны, интерференция.
Hybrid grid method for external and internal gas dynamics
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 543-565Based on the modeling method using a mesh system, an algorithm is implemented for solving a unsteady problem with moving bodies The algorithm takes into account the movement and rotation of bodies according to a given law of motion. The algorithm is applied to analysis the flow around an infinite composed of cylinders with an elliptical cross-section, which either move across the flow or rotate with a change in the angle of attack. To simulate the flow of bodies with a sharp edge, characteristic of the profiles of gas turbine machines, an algorithm for constructing a mesh of type C with the inclusion of a certain area behind the profile is implemented. The program for modeling the flow near the profile is implemented within the framework of models of Euler equations, Navier – Stokes equations in the approximation of a thin layer with laminar viscosity and turbulent viscosity in the framework of an algebraic viscosity model. The program has also been adapted to solve the problems of internal gas dynamics of turbomachines. For this purpose, the method of setting the boundary conditions at the entrance and exit from the calculated area from the velocity to the pressure drop, as well as at the lateral boundaries from the free flow to the periodicity, was changed. This made it possible to simulate the flow of gas in the inter-blade channels of compressors and turbines of gas turbine engines. To refine the algorithm, a series of calculations of the aerodynamic parameters of several turbine cascades in various subsonic and supersonic modes and their comparison with the experiment were carried out. Calculations of turbine grating parameters were carried out within the framework of the inviscid and viscous gas model. The calculation and experiment were compared by the distribution of gas parameters near the profile, as well as by the energy losses of the flow in the cascade. Calculations have shown the applicability and correctness of the program to solve this class of problems. To test the program on the problems of external subsonic aerodynamics, calculations of the aerodynamic characteristics of an isolated airfoil in an undisturbed flow were performed. The results obtained allow us to assert the applicability of the hybrid grid method to various classes of problems of applied gas dynamics.
-
Численное моделирование сходящихся сферических ударных волн с нарушенной симметрией
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 59-71На основе гидродинамического 3D-моделирования с использованием уравнения состояния газа твердых сфер Карнахана – Старлинга выполнено исследование развития периодических возмущений сходящейся сферической ударной волны, приводящих к ограничению кумуляции. Метод решения системы уравнений Эйлера на подвижных (сжимающихся) сетках позволяет с высокой точностью проследить эволюцию фронта сходящейся ударной волны в широком диапазоне изменения ее радиуса. Скорость сжатия расчетной сетки адаптируется к движению фронта ударной волны, при этом движение границ расчетной области выбирается из условия сверхзвуковой скорости ее движения относительно среды. Это приводит к тому, что решение на этапе сжатия определяется только начальными данными. Применена схема TVD второго порядка аппроксимации для реконструкции вектора консервативных переменных на границах расчетных ячеек в сочетании со схемой Русанова для расчета численного вектора потоков. Выбор обусловлен сильной тенденцией к проявлению в расчетах численной неустойчивости типа «карбункул», известной для других классов течений. Использование сжимающихся сеток позволило исследовать детальную картину течения на масштабе прекращения кумуляции, что невозможно в рамках метода геометрической динамики ударных волн Уизема (Whitham), применявшегося ранее другими авторами для расчета сходящихся ударных волн. Исследование показало, что ограничение кумуляции связанно с переходом от маховского взаимодействия сегментов сходящейся ударной волны к регулярному вследствие прогрессирующего роста отношения азимутальной скорости на фронте ударной волны к радиальной при уменьшении ее радиуса. Установлено, что это отношение представляется в виде произведения ограниченной осциллирующей функции радиуса и степенной функции радиуса с показателем степени, зависящим от начальной плотности упаковки в модели твердых сфер. Показано, что увеличение параметра плотности упаковки в модели твердых сфер приводит к значительному увеличению давлений, достигаемых в ударной волне с нарушенной симметрией. Впервые в расчете показано, что на масштабе прекращения кумуляции течение сопровождается формированием высокоэнергетичных вихрей, в которые вовлечено вещество, подвергшееся наибольшему ударно-волновому сжатию. Оказывая влияние на процессы тепло- и массопереноса в области наибольшего сжатия, это обстоятельство является важным для актуальных практических применений сходящихся ударных волн в целях инициирования реакций (детонации, фазовых переходов, управляемого термоядерного синтеза).
Ключевые слова: численное моделирование, сходящиеся ударные волны, нарушение симметрии, фокусировка ударной волны, кумуляция, газ твердых сфер.
Numerical simulation of converging spherical shock waves with symmetry violation
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 59-71The study of the development of π-periodic perturbations of a converging spherical shock wave leading to cumulation limitation is performed. The study is based on 3D hydrodynamic calculations with the Carnahan – Starling equation of state for hard sphere fluid. The method of solving the Euler equations on moving (compressing) grids allows one to trace the evolution of the converging shock wave front with high accuracy in a wide range of its radius. The compression rate of the computational grid is adapted to the motion of the shock wave front, while the motion of the boundaries of the computational domain satisfy the condition of its supersonic velocity relative to the medium. This leads to the fact that the solution is determined only by the initial data at the grid compression stage. The second order TVD scheme is used to reconstruct the vector of conservative variables at the boundaries of the computational cells in combination with the Rusanov scheme for calculating the numerical vector of flows. The choice is due to a strong tendency for the manifestation of carbuncle-type numerical instability in the calculations, which is known for other classes of flows. In the three-dimensional case of the observed force, the carbuncle effect was obtained for the first time, which is explained by the specific nature of the flow: the concavity of the shock wave front in the direction of motion, the unlimited (in the symmetric case) growth of the Mach number, and the stationarity of the front on the computational grid. The applied numerical method made it possible to study the detailed flow pattern on the scale of cumulation termination, which is impossible within the framework of the Whitham method of geometric shock wave dynamics, which was previously used to calculate converging shock waves. The study showed that the limitation of cumulation is associated with the transition from the Mach interaction of converging shock wave segments to a regular one due to the progressive increase in the ratio of the azimuthal velocity at the shock wave front to the radial velocity with a decrease in its radius. It was found that this ratio is represented as a product of a limited oscillating function of the radius and a power function of the radius with an exponent depending on the initial packing density in the hard sphere model. It is shown that increasing the packing density parameter in the hard sphere model leads to a significant increase in the pressures achieved in a shock wave with broken symmetry. For the first time in the calculation, it is shown that at the scale of cumulation termination, the flow is accompanied by the formation of high-energy vortices, which involve the substance that has undergone the greatest shock-wave compression. Influencing heat and mass transfer in the region of greatest compression, this circumstance is important for current practical applications of converging shock waves for the purpose of initiating reactions (detonation, phase transitions, controlled thermonuclear fusion).
-
Локализованные волны уравнения $\varphi^4$ в модели с двумя протяженными примесями
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 437-449В данной работе рассматривается взаимодействие кинка уравнения $\varphi^4$ с двумя протяженными одинаковыми примесями. Протяженная примесь описывается с помощью функции прямоугольного вида. Анализируется случай притягивающей примеси. С помощью аналитических методов рассматривается случай малых амплитуд локализованных волн, когда возможно провести линеаризацию уравнений движения. Для численного решения использовался метод прямых для уравнений в частных производных. Для нахождения частот колебаний, локализованных на примесях волн, используется дискретное преобразование Фурье. Кинк запускался в направлении примесей с разными начальными скоростями. Изменялось также расстояние между двумя примесями. Показано, что при взаимодействии кинка с примесями на них возбуждаются долгоживущие локализованные волны бризерного типа. Исследована их структура и связанная динамика. Определено, как, изменяя параметры примесей и расстояние между ними, можно управлять типом и динамическими параметрами связанных колебаний, локализованных на примесях волн. Найдены возможные решения в виде синфазных, антифазных колебаний, в виде биений. Колебания локализованных волн происходят с излучением волн малой амплитуды. Спектр этих излучений состоит из двух частот. Первая приближенно равна $\sqrt{2}$, что соответствует величине частоты для хвоста воблингбризера уравнения $\varphi^4$. Вторая приближенно равна удвоенной частоте колебаний примесных мод. Найдено (как аналитически, так и численно) наличие двух возможных частот для связанных локализованных колебаний. Показано, что частоты сильно зависят от расстояния между примесями. С увеличением расстояния между примесями частоты сливаются в одну — частоту, полученную для случая одиночной примеси. Найденные численно и аналитически зависимости частот от расстояния между примесями хорошо совпадают для больших расстояний, когда взаимодействие между примесями слабое, и начинают заметно отличаться при малых расстояниях, когда взаимодействие между примесями сильное. Аналитическое значение величин полученных частот всегда больше численных. Показано, что зависимость амплитуды локализованных волн от начальной скорости кинка имеет несколько минимумов и максимумов.
Localized waves of the $\varphi^4$ equation in models with two extended impurities
Computer Research and Modeling, 2025, v. 17, no. 3, pp. 437-449In this paper, we consider the interaction of a kink of the $\varphi^4$ equation with two identical extended impurities. An extended impurity is described using a rectangular function. The case of an attractive impurity is analyzed. Using analytical methods, we consider the case of small amplitudes of localized waves, when it is possible to linearize the equations of motion. For the numerical solution, the method of lines for partial differential equations was used. To find the oscillation frequencies of waves localized on impurities, the discrete Fourier transform is used. The kink was launched in the direction of the impurities with different initial velocities. The distance between the two impurities was also varied. It is shown that when a kink interacts with impurities, long-lived localized breather-type waves are excited on them. Their structure and coupled dynamics are investigated. It is determined how, by changing the parameters of the impurities and the distance between them, it is possible to control the type and dynamic parameters of the coupled oscillations of the waves localized on the impurities. Possible solutions in the form of in-phase, antiphase oscillations, in the form of beats are found. The oscillations of localized waves occur with the emission of small-amplitude waves. The spectrum of these emissions consists of two frequencies. The first is approximately equal to $\sqrt{2}$, which corresponds to the frequency value for the wobbling breather tail of the $\varphi^4$ equation. The second is approximately equal to the doubled frequency of impurity mode oscillations. The presence of two possible frequencies for coupled localized oscillations is found both analytically and numerically. It is shown that the frequencies strongly depend on the distance between impurities. With increasing distance between impurities, the frequencies merge into one — frequency obtained for the case of a single impurity. The dependences of the frequencies on the distance between impurities found numerically and analytically coincide well for large distances, when the interaction between impurities is weak, and begin to differ noticeably at small distances, when the interaction between impurities is strong. The analytical value of the obtained frequencies is always greater than the numerical ones. It is shown that the dependence of the amplitude of localized waves on the initial kink velocity has several minima and maxima.
-
Моделирование нелинейных аэроупругих колебаний стенки канала, взаимодействующей с пульсирующим слоем вязкого газа
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 583-600В работе предложена математическая модель аэроупругих колебаний стенки узкого канала, имеющей нелинейно-упругий подвес и взаимодействующей с пульсирующим слоем вязкого газа. В рамках данной модели определены и исследованы аэроупругий отклик стенки канала и соответствующий ему фазовый сдвиг. Сформулированная авторами модель позволяет одновременно исследовать влияние на колебания стенки нелинейной жесткости ее упругого подвеса, сжимаемости и диссипативных свойств газа, а также инерции его движения в канале под действием пульсирующего перепада давления. Модель разработана на базе постановки и решения плоской начально-краевой задачи математической физики, включающей систему уравнений динамики баротропного вязкого газа, уравнения динамики жесткой стенки как одномассового нелинейного осциллятора. Используя метод возмущений, проведен асимптотический анализ задачи с последующим решением уравнений динамики тонкого слоя вязкого газа методом итерации. В результате определен закон распределения давления газа в канале и исходная задача аэроупругости сведена к исследованию обобщенного уравнения Дуффинга. Его решение осуществлено методом гармонического баланса, что позволило определить аэроупругий и фазовый отклики стенки канала в виде неявных функций. Проведено численное исследование данных откликов для оценки влияния инерции движения газа и его сжимаемости, а также сравнение полученных результатов с частными случаями ползущего движения вязкого газа и несжимаемой вязкой жидкости. Результаты проведенного исследования показали важность одновременного учета сжимаемости и инерции движения вязкого газа при моделировании аэроупругих колебаний стенки рассматриваемого канала.
Ключевые слова: моделирование, вязкий газ, нелинейные аэроупругие колебания, стенка канала, пульсирующий перепад давления, аэроупругий отклик, фазовый сдвиг.
Modeling of nonlinear aeroelastic oscillations of a channel wall interacting with a pulsating viscous gas layer
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 583-600The mathematical model for aeroelastic oscillations of a narrow channel wall with a nonlinear-elastic suspension and interacting with a pulsating viscous gas layer is proposed. Within the framework of this model, the aeroelastic response of the channel wall and its phase response were determined and investigated. The authors simultaneously studied the influence of the nonlinear stiffness elastic suspension of the wall, compressibility and dissipative properties of gas, as well as the inertia of its motion on the wall oscillations. The model was elaborated based on the formulation and solution of the initial boundary-value plane problem of mathematical physics. The problem governing equations include the equations of dynamics for barotropic viscous gas, equation of dynamics for the rigid wall as the spring-mass nonlinear oscillator. Using the perturbation method, the asymptotic analysis of the problem was carried out. The solution of the equations of dynamics for the thin layer of viscous gas was obtained by the iteration method. As a result, the law of gas pressure distribution in the channel was determined and the initial problem of aeroelasticity was reduced to the study of the generalized Duffing equation. Its solution was realized by the harmonic balance method, which allowed us to determine the aeroelastic and phase responses of the channel wall in the form of implicit functions. The numerical study of these responses was carried out to evaluate the influence for inertia of gas motion and its compressibility, as well as a comparison of the results obtained with the special cases of creeping motion of viscous gas and incompressible viscous fluid. The results of this study have shown the importance of simultaneous consideration of compressibility and inertia of viscous gas motion when modeling aeroelastic oscillations of the considered channel wall.
-
Об одном резольвентном методе интегрирования уравнений свободного движения в среде с квадратичным сопротивлением
Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 265-277Предложен новый набор ключевых баллистических параметров: b0 = tgθ0, θ0 — угол вылета, Ra — вершинный радиус кривизны траектории и β0 — безразмерный квадрат разворотной скорости, и на его основе разработан новый прием приближенного интегрирования уравнений динамики материальной точки в среде с квадратичным сопротивлением (α = R/mg = 0,5…1,5) при tgθ0 < 0,5. Способ базируется на преобразованиях Лежандра, и он дает формулы с автоматически подстраиваемой точностью как для текущих координат x(b), y(b) и времени t(b), b = tgθ — текущий наклон траектории, так и для основных параметров (время T, дальность L, положение вершины La) траектории в диапазоне, далеко выходящем за малоугловую область прицельной стрельбы. Точность формул выверялась при помощи продукта Maple.
Ключевые слова: квадратичный закон сопротивления, преобразования Лежандра, баллистический, малоугловая область, автоподстройка точности, Maple.
On one resolvent method for integrating the low angle trajectories of a heavy point projectile motion under quadratic air resistance
Computer Research and Modeling, 2011, v. 3, no. 3, pp. 265-277Views (last year): 1. Citations: 6 (RSCI).New key parameters, namely b0 = tgθ0, θ0 — angle of throwing, Ra — top curvature radius and β0 — dimensionless speed square on the top of low angular trajectory were suggested in classic problem of integrating nonlinear equations of point mass projectile motion with quadratic air drag. Very precise formulae were obtained in a new way for coordinates x(b), y(b) and fly time t(b), b = tgθ where θ is inclination angle. This method is based on Legendre transformation and its precision is automatically improved in wide range of the θ0 values and drag force parameters α. The precision was monitored by Maple computing product.
-
Управление динамикой кинка модифицированного уравнения синус-Гордона внешним воздействием с меняющимися параметрами
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 821-834В работе представлены результаты, подтверждающие возможность управления движением кинка модифицированного уравнения синус-Гордона внешним воздействием с изменяющимися параметрами. Рассмотрены три типа внешних воздействий: постоянное, периодическое с постоянной частотой и периодическое частотно-модулированное. С использованием метода Мак-Лафлина–Скотта получены зависимости координаты и скорости кинка от времени при разных значениях параметров внешнего воздействия. Показано, что изменяя параметры, можно регулировать скорость и направление движения кинка.
Ключевые слова: уравнение синус-Гордона, солитоны, кинки, управление динамикой кинка, нелинейная динамика ДНК.
Control of the dynamics of the kink of the modified sine-Gordon equation by the external exposure with varying parameters
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 821-834Views (last year): 2. Citations: 4 (RSCI).The paper presents results that confirm the ability to control the movement of the kink of the modified sine-Gordon equation with variable external force parameters. Three types of external influences have been considered: permanent action, periodic action with a constant frequency and a frequency-modulated periodic exposure. The dependences of the position and velocity of the kink on time for various values of the parameters of external influence were obtained using the method of McLaughlin and Scott. It is shown that by changing the settings, one can adjust the velocity and direction of movement of the kink.
-
Двумерное макроскопическое и микроскопическое моделирование процессов взаимодействия воды и пористых материалов
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 77-86В различных областях науки, техники, защиты окружающей среды, в строительстве актуальными являются вопросы изучения процессов взаимодействия пористых материалов с веществами, находящимися в различных агрегатных состояниях. Особенно актуальными с точки зрения экологии и защиты окружающей среды являются исследования процессов взаимодействия пористых материалов с водой в жидкой и газообразной фазе. Поскольку в одном моле воды содержится 6.022140857 · 1023 молекул H2O, для описания свойств, например, водяного пара в поре в основном используются макроскопические подходы, рассматривающие водяной пар как сплошную среду в рамках аэродинамики. В данной работе построена и использовалась для моделирования макроскопическая двумерная диффузионная модель [Bitsadze, Kalinichenko, 1980] поведения водяного пара внутри изолированной поры. Наряду с макроскопической моделью в работе предложена микроскопическая модель поведения водяного пара внутри изолированной поры, построенная в рамках молекулярно-динамического подхода [Gould et al., 2005]. В данной модели на основе классической механики Ньютона описывается движение каждой молекулы воды, взаимодействующей как с другими молекулами воды, так и со стенками поры. Рассматривается эволюция системы «водяной пар – пора» с течением времени. В зависимости от внешних по отношению к поре условий система эволюционирует к различным состояниям равновесия, которые характеризуются различными значениями макроскопических характеристик, таких как температура, плотность, давление. Сравнение результатов молекулярно-динамического моделирования с результатами вычислений на основе макроскопической диффузионной модели и экспериментальными данными позволяет сделать вывод о необходимости сочетания макроскопического и микроскопического подхода для адекватного и более точного описания процессов взаимодействия водяного пара с пористыми материалами.
2D microscopic and macroscopic simulation of water and porous material interaction
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 77-86Views (last year): 10.In various areas of science, technology, environment protection, construction, it is very important to study processes of porous materials interaction with different substances in different aggregation states. From the point of view of ecology and environmental protection it is particularly actual to investigate processes of porous materials interaction with water in liquid and gaseous phases. Since one mole of water contains 6.022140857 · 1023 molecules of H2O, macroscopic approaches considering the water vapor as continuum media in the framework of classical aerodynamics are mainly used to describe properties, for example properties of water vapor in the pore. In this paper we construct and use for simulation the macroscopic two-dimensional diffusion model [Bitsadze, Kalinichenko, 1980] describing the behavior of water vapor inside the isolated pore. Together with the macroscopic model it is proposed microscopic model of the behavior of water vapor inside the isolated pores. This microscopic model is built within the molecular dynamics approach [Gould et al., 2005]. In the microscopic model a description of each water molecule motion is based on Newton classical mechanics considering interactions with other molecules and pore walls. Time evolution of “water vapor – pore” system is explored. Depending on the external to the pore conditions the system evolves to various states of equilibrium, characterized by different values of the macroscopic characteristics such as temperature, density, pressure. Comparisons of results of molecular dynamic simulations with the results of calculations based on the macroscopic diffusion model and experimental data allow to conclude that the combination of macroscopic and microscopic approach could produce more adequate and more accurate description of processes of water vapor interaction with porous materials.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение.
Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1323-1338For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.
On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.
The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.
-
Моделирование гидроупругих колебаний стенки канала, имеющей нелинейно-упругую опору
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 79-92В работе сформулирована математическая модель для исследования нелинейного гидроупругого отклика стенки узкого канала, заполненного пульсирующей вязкой жидкостью, опирающейся на пружину c нелинейной жесткостью. В отличие от известных подходов в рамках предложенной модели осуществлен одновременный учет инерционных и диссипативных свойств вязкой несжимаемой жидкости и нелинейности восстанавливающей силы поддерживающей пружины. Математическая модель представляет собой систему уравнений плоской задачи гидроупругости, включающей уравнения движения вязкой несжимаемой жидкости, с соответствующими краевыми условиями, и уравнение движения стенки канала как одномассовой модели с восстанавливающей силой, имеющей кубическую нелинейность. Динамика вязкой жидкости первоначально исследована в рамках гидродинамической теории смазки, т.е. без учета инерции ее движения. На следующем этапе для учета инерции движения вязкой жидкости использован метод итерации. Найдены законы распределения гидродинамических параметров вязкой жидкости в канале, что позволило определить ее реакцию, действующую на стенку канала. В результате показано, что исходная задача гидроупругости сводится к одному нелинейному уравнению, совпадающему с уравнением Дуффинга. В данном уравнении коэффициент демпфирования определяется физическими свойствами жидкости и геометрическими размерами канала, а учет инерции движения жидкости приводит к появлению дополнительной присоединенной массы, зависящей от тех же параметров. Исследование нелинейного уравнения гидроупругих колебаний проведено методом гармонического баланса для основной частоты пульсаций вязкой жидкости. В результате найден основной гидроупругий отклик стенки канала, опирающейся на пружину с мягкой или жесткой кубической нелинейностью. Численное моделирование гидроупругого отклика стенки канала показало возможность скачкообразного изменения амплитуд ее колебаний, а также дало возможность оценить влияние инерции движения жидкости на частотный диапазон, в котором наблюдаются данные изменения.
Ключевые слова: нелинейные колебания, вязкая жидкость, стенка канала на нелинейно-упругой опоре, пульсация давления, кубическая нелинейность, гидроупругий отклик.
Modeling of hydroelastic oscillations for a channel wall possessing a nonlinear elastic support
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 79-92The paper deals with the mathematical model formulation for studying the nonlinear hydro-elastic response of the narrow channel wall supported by a spring with cubic nonlinearity and interacting with a pulsating viscous liquid filling the channel. In contrast to the known approaches, within the framework of the proposed mathematical model, the inertial and dissipative properties of the viscous incompressible liquid and the restoring force nonlinearity of the supporting spring were simultaneously taken into account. The mathematical model was an equations system for the coupled plane hydroelasticity problem, including the motion equations of a viscous incompressible liquid, with the corresponding boundary conditions, and the channel wall motion equation as a single-degree-of-freedom model with a cubic nonlinear restoring force. Initially, the viscous liquid dynamics was investigated within the framework of the hydrodynamic lubrication theory, i. e. without taking into account the liquid motion inertia. At the next stage, the iteration method was used to take into account the motion inertia of the viscous liquid. The distribution laws of the hydrodynamic parameters for the viscous liquid in the channel were found which made it possible to determine its reaction acting on the channel wall. As a result, it was shown that the original hydroelasticity problem is reduced to a single nonlinear equation that coincides with the Duffing equation. In this equation, the damping coefficient is determined by the liquid physical properties and the channel geometric dimensions, and taking into account the liquid motion inertia lead to the appearance of an added mass. The nonlinear equation study for hydroelastic oscillations was carried out by the harmonic balance method for the main frequency of viscous liquid pulsations. As a result, the primary steady-state hydroelastic response for the channel wall supported by a spring with softening or hardening cubic nonlinearity was found. Numerical modeling of the channel wall hydroelastic response showed the possibility of a jumping change in the amplitudes of channel wall oscillations, and also made it possible to assess the effect of the liquid motion inertia on the frequency range in which these amplitude jumps are observed.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




