All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
- Views (last year): 6.
- Views (last year): 36.
-
Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 13-25В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.
Ключевые слова: случайный сигнал, распределение Райса, распределение Гаусса, метод максимума правдоподобия, отношение сигнала к шуму.
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Views (last year): 2. Citations: 4 (RSCI).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Моделирование траекторий временных рядов с помощью уравнения Лиувилля
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.
Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.
Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.
Ключевые слова: нестационарный временной ряд, выборочная функция распределения, аппроксимация скорости, кинетическое уравнение, полугруппа.
Modeling time series trajectories using the Liouville equation
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 585-598This paper presents algorithm for modeling set of trajectories of non-stationary time series, based on a numerical scheme for approximating the sample density of the distribution function in a problem with fixed ends, when the initial distribution for a given number of steps transforms into a certain final distribution, so that at each step the semigroup property of solving the Liouville equation is satisfied. The model makes it possible to numerically construct evolving densities of distribution functions during random switching of states of the system generating the original time series.
The main problem is related to the fact that with the numerical implementation of the left-hand differential derivative in time, the solution becomes unstable, but such approach corresponds to the modeling of evolution. An integrative approach is used while choosing implicit stable schemes with “going into the future”, this does not match the semigroup property at each step. If, on the other hand, some real process is being modeled, in which goal-setting presumably takes place, then it is desirable to use schemes that generate a model of the transition process. Such model is used in the future in order to build a predictor of the disorder, which will allow you to determine exactly what state the process under study is going into, before the process really went into it. The model described in the article can be used as a tool for modeling real non-stationary time series.
Steps of the modeling scheme are described further. Fragments corresponding to certain states are selected from a given time series, for example, trends with specified slope angles and variances. Reference distributions of states are compiled from these fragments. Then the empirical distributions of the duration of the system’s stay in the specified states and the duration of the transition time from state to state are determined. In accordance with these empirical distributions, a probabilistic model of the disorder is constructed and the corresponding trajectories of the time series are modeled.
-
Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.
Denoising fluorescent imaging data with two-step truncated HOSVD
Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.
-
Статистический анализ фазы квазигармонического сигнала методом моментов как инструмент оценивания параметров сигнала
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1037-1049В работе представлены результаты теоретического исследования особенностей статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Выявленные особенности распределения фазы легли в основу развиваемого оригинального метода оценивания параметров исходного, неискаженного сигнала. Показано, что задача оценивания исходного значения фазы может эффективно решаться расчетом математического ожидания результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать зависимость дисперсии выборочных значений фазы от данного параметра. Для решения этой задачи используются полученные в явном виде аналитические формулы для моментов низших порядков распределения фазы, развит и обоснован новый подход к оцениванию параметров квазигармонического сигнала на основе измерения величины второго центрального момента, т. е. разброса выборочных значений фазы. В частности, применение данного метода обеспечивает высокоточное измерение амплитудных характеристик анализируемого сигнала посредством проведения лишь фазовых измерений. Численные результаты, полученные в ходе проведенного компьютерного моделирования, подтверждают теоретические выводы и эффективность разработанного метода. В работе обоснованы существование и единственность решения задачи оценивания параметров сигнала методом моментов. Показано, что функция, отображающая зависимость второго центрального момента от искомого параметра отношения сигнала к шуму, является монотонно убывающей и тем самым однозначной функцией искомого параметра. Разработанный метод оценивания параметров сигнала представляет интерес для решения широкого круга научных и прикладных задач, связанных с необходимостью измерения уровня сигнала и его фазы, в таких областях, как обработка данных в системах медицинской диагностической визуализации, обработка радиосигналов, радиофизика, оптика, радионавигация, метрология.
Ключевые слова: квазигармонический сигнал, гауссовский шум, отношение сигнала к шуму, метод моментов, дисперсия, второй центральный момент, функция распределения, функция плотности вероятности.
Statistical analysis of the quasi-harmonic signal’s phase by method of moments as a tool of signal’s parameters estimation
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1037-1049The paper presents the results of theoretical investigation of the peculiarities of the quasi-harmonic signal’s phase statistical distribution, while the quasi-harmonic signal is formed as a result of the Gaussian noise impact on the initially harmonic signal. The revealed features of the phase distribution became a basis for the original technique elaborated for estimating the parameters of the initial, undistorted signal. It has been shown that the task of estimation of the initial phase value can be efficiently solved by calculating the magnitude of the mathematical expectation of the results of the phase sampled measurements, while for solving the task of estimation of the second parameter — the signal level respectively to the noise level — the dependence of the phase sampled measurements variance upon the sough-for parameter is proposed to be used. For solving this task the analytical formulas having been obtained in explicit form for the moments of lower orders of the phase distribution, are applied. A new approach to quasi-harmonic signal’s parameters estimation based on the method of moments has been developed and substantiated. In particular, the application of this method ensures a high-precision measuring the amplitude characteristics of a signal by means of the phase measurements only. The numerical results obtained by means of conducted computer simulation of the elaborated technique confirm both the theoretical conclusions and the method’s efficiency. The existence and the uniqueness of the task solution by the method of moments is substantiated. It is shown that the function that describes the dependence of the phase second central moment on the sough-for parameter, is a monotonically decreasing and thus the single-valued function. The developed method may be of interest for solving a wide range of scientific and applied tasks, connected with the necessity of estimation of both the signal level and the phase value, in such areas as data processing in systems of medical diagnostic visualization, radio-signals processing, radio-physics, optics, radio-navigation and metrology.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




