All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Views (last year): 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
Определение характеристик случайного процесса путем сравнения со значениями на основе моделей законов распределения
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1105-1118Эффективность систем связи и передачи данных (ССиПД), являющихся неотъемлемой составляющей современных систем практически в любой области науки и техники, во многом зависит от стабильности частоты формируемых сигналов. Формируемые в ССиПД сигналы могут рассматриваться как процессы, частота которых изменяется под действием совокупности внешних воздействий. Изменение частоты сигналов приводит к уменьшению отношения «сигнал/шум» (ОСШ) и, соответственно, ухудшению характеристик ССиПД, таких как вероятность битовой ошибки, пропускная способность. Описание таких изменений частоты сигналов наиболее удобно рассматривать как случайные процессы, аппарат которых находит широкое применение при построении математических моделей, описывающих функционирование систем и устройств в различных областях науки и техники. При этом во многих случаях характеристики случайного процесса, такие как закон распределения, математическое ожидание и дисперсия, могут являться неизвестными или известными с погрешностями, не позволяющими получить приемлемые по точности оценки параметров сигналов. В статье предлагается алгоритм решения задачи по определению характеристик случайного процесса (частоты сигнала) на основе набора отсчетов его частоты, позволяющих определить выборочное среднее, выборочную дисперсию и закон распределения отклонений частоты в генеральной совокупности. Основой данного алгоритма является сравнение измеренных на некотором временном интервале значений наблюдаемого случайного процесса с набором того же количества случайных значений, сформированных на основе модельных законов распределения. В качестве модельных законов распределения могут рассматриваться законы распределения, принятые на основе математических моделей этих систем и устройств или соответствующие аналогичным системам и устройствам. В качестве математического ожидания и дисперсии при формировании набора случайных значений для принятого модельного закона распределения принимаются выборочные среднее значение и дисперсия, полученные по результатам измерений наблюдаемого случайного процесса. Особенность алгоритма заключается в проведении сравнения упорядоченных по возрастанию или убыванию измеренных значений наблюдаемого случайного процесса и сформированных наборов значений в соответствии с принятыми моделями законов распределения. Приведены результаты математического моделирования, иллюстрирующие применение данного алгоритма.
Ключевые слова: случайный процесс, характеристики случайного процесса, выборочное среднее значение, выборочная дисперсия, корреляция упорядоченных наборов отсчетов случайных значений.
Determining the characteristics of a random process by comparing them with values based on models of distribution laws
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1105-1118The effectiveness of communication and data transmission systems (CSiPS), which are an integral part of modern systems in almost any field of science and technology, largely depends on the stability of the frequency of the generated signals. The signals generated in the CSiPD can be considered as processes, the frequency of which changes under the influence of a combination of external influences. Changing the frequency of the signals leads to a decrease in the signal-tonoise ratio (SNR) and, consequently, a deterioration in the characteristics of the signal-to-noise ratio, such as the probability of a bit error and bandwidth. It is most convenient to consider the description of such changes in the frequency of signals as random processes, the apparatus of which is widely used in the construction of mathematical models describing the functioning of systems and devices in various fields of science and technology. Moreover, in many cases, the characteristics of a random process, such as the distribution law, mathematical expectation, and variance, may be unknown or known with errors that do not allow us to obtain estimates of the signal parameters that are acceptable in accuracy. The article proposes an algorithm for solving the problem of determining the characteristics of a random process (signal frequency) based on a set of samples of its frequency, allowing to determine the sample mean, sample variance and the distribution law of frequency deviations in the general population. The basis of this algorithm is the comparison of the values of the observed random process measured over a certain time interval with a set of the same number of random values formed on the basis of model distribution laws. Distribution laws based on mathematical models of these systems and devices or corresponding to similar systems and devices can be considered as model distribution laws. When forming a set of random values for the accepted model distribution law, the sample mean value and variance obtained from the measurement results of the observed random process are used as mathematical expectation and variance. The feature of the algorithm is to compare the measured values of the observed random process ordered in ascending or descending order and the generated sets of values in accordance with the accepted models of distribution laws. The results of mathematical modeling illustrating the application of this algorithm are presented.
-
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
Bottom stability in closed conduits
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068Views (last year): 1. Citations: 2 (RSCI).In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.
-
Кластерный метод математического моделирования интервально-стохастических тепловых процессов в электронных системах
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1023-1038В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.
Ключевые слова: математическое моделирование, тепловая модель, кластер, электронная система, стохастический, тепловой процесс, статистические меры, математические ожидания, ковариации, дисперсии.
Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.
-
Об одном подходе к имитационному моделированию спортивной игры с дискретным временем
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 271-279В статье предлагается подход к имитационному моделированию спортивной игры, состоящей из дискретного набора отдельных поединков, основанный на рассмотрении матча как случайного процесса, в общем случае не являющегося марковским. Первоначально ход игры рассматривается как марковский процесс, на основании чего строятся рекуррентные соотношения между вероятностями достижения состояний теннисного матча, а также между вторичными показателями, такими как математическое ожидание и дисперсия числа розыгрышей, остающихся до завершения гейма. Затем, в рамках имитационной системы, моделирующей матч, мы позволяем произвольное изменение вероятностей исходов составляющих матч поединков, в том числе и в зависимости от результатов предыдущих. Данная работа посвящена модификации модели, ранее предлагавшейся авторами для спортивных игр с непрерывным временем.
Предлагаемый подход позволяет оценивать не только вероятность того или иного исхода матча, но и вероятности достижения каждого из возможных промежуточных результатов, а также вторичные показатели игры, такие как число таких отдельных поединков, потребовавшееся для завершения матча. Подробно изложено построение имитационной системы для гейма теннисного матча, по аналогии с которой осуществляется моделирование сета и всего матча. Доказано утверждение относительно справедливости правил подачи в теннисе, понимаемой в смысле отсутствия влиянии права первой подачи на исход матча. В качестве примера проведены моделирование и анализ планировавшейся, но не состоявшейся игры одного из турниров серии ATP. Получены наиболее вероятные промежуточные и окончательные результаты матча для трех сценариев хода игры.
Основным результатом данной работы является предлагаемая методика имитационного моделирования матча, применимая не только к теннису, но и к другим видам спортивных игр с дискретным временем.
Ключевые слова: математическое моделирование, имитационное моделирование, статистическое моделирование, спортивные соревнования.
On a possible approach to a sport game with discrete time simulation
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 271-279Views (last year): 9.The paper proposes an approach to simulation of a sport game, consisting of a discrete set of separate competitions. According to this approach, such a competition is considered as a random processes, generally — a non-Markov’s one. At first we treat the flow of the game as a Markov’s process, obtaining recursive relationship between the probabilities of achieving certain states of score in a tennis match, as well as secondary indicators of the game, such as expectation and variance of the number of serves to finish the game. Then we use a simulation system, modeling the match, to allow an arbitrary change of the probabilities of the outcomes in the competitions that compose the match. We, for instance, allow the probabilities to depend on the results of previous competitions. Therefore, this paper deals with a modification of the model, previously proposed by the authors for sports games with continuous time.
The proposed approach allows to evaluate not only the probability of the final outcome of the match, but also the probabilities of reaching each of the possible intermediate results, as well as secondary indicators of the game, such as the number of separate competitions it takes to finish the match. The paper includes a detailed description of the construction of a simulation system for a game of a tennis match. Then we consider simulating a set and the whole tennis match by analogy. We show some statements concerning fairness of tennis serving rules, understood as independence of the outcome of a competition on the right to serve first. We perform simulation of a cancelled ATP series match, obtaining its most probable intermediate and final outcomes for three different possible variants of the course of the match.
The main result of this paper is the developed method of simulation of the match, applicable not only to tennis, but also to other types of sports games with discrete time.
-
Механизм остановки движущегося солитона в однородной молекулярной цепочке
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 93-99С помощью численных экспериментов показано, что в цепочке без дисперсии существует решение солитонного типа, но скорость движущейся уединенной волны со временем уменьшается. Физический механизм убывания скорости обусловлен возбуждением незатухающих колебаний сайтов при движении уединенной волны по цепочке. Сделана оценка расстояния, которое пройдет волна до остановки.
Mechanism of soliton stopping in a molecular chain without dispersion
Computer Research and Modeling, 2009, v. 1, no. 1, pp. 93-99Views (last year): 2. Citations: 1 (RSCI).It is shown by computer simulation that moving soliton-like solution exists in a molecular chain without dispersion. The speed of the solitary wave decreases with time. This decrease can be explained physically due to excitation of sites by moving wave. Maximum wave track length is estimated.
-
Оценивание параметров моделей временных рядов с марковскими переключениями режимов
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.
Ключевые слова: оценивание параметров, модели регрессии, модели с марковскими переключениями, функция правдоподобия, метод максимума правдоподобия, дисперсия шума, отношение сигнала к шуму.
Estimation of models parameters for time series with Markov switching regimes
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 903-918Views (last year): 36.The paper considers the problem of estimating the parameters of time series described by regression models with Markov switching of two regimes at random instants of time with independent Gaussian noise. For the solution, we propose a variant of the EM algorithm based on the iterative procedure, during which an estimation of the regression parameters is performed for a given sequence of regime switching and an evaluation of the switching sequence for the given parameters of the regression models. In contrast to the well-known methods of estimating regression parameters in the models with Markov switching, which are based on the calculation of a posteriori probabilities of discrete states of the switching sequence, in the paper the estimates are calculated of the switching sequence, which are optimal by the criterion of the maximum of a posteriori probability. As a result, the proposed algorithm turns out to be simpler and requires less calculations. Computer modeling allows to reveal the factors influencing accuracy of estimation. Such factors include the number of observations, the number of unknown regression parameters, the degree of their difference in different modes of operation, and the signal-to-noise ratio which is associated with the coefficient of determination in regression models. The proposed algorithm is applied to the problem of estimating parameters in regression models for the rate of daily return of the RTS index, depending on the returns of the S&P 500 index and Gazprom shares for the period from 2013 to 2018. Comparison of the estimates of the parameters found using the proposed algorithm is carried out with the estimates that are formed using the EViews econometric package and with estimates of the ordinary least squares method without taking into account regimes switching. The account of regimes switching allows to receive more exact representation about structure of a statistical dependence of investigated variables. In switching models, the increase in the signal-to-noise ratio leads to the fact that the differences in the estimates produced by the proposed algorithm and using the EViews program are reduced.
-
Об ускоренных методах для седловых задач с композитной структурой
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 433-467В данной работе рассматриваются сильно-выпукло сильно-вогнутые не билинейные седловые задачи с разными числами обусловленности по прямым и двойственным переменным. Во-первых, мы рассматриваем задачи с гладкими композитами, один из которых имеет структуру с конечной суммой. Для этой задачи мы предлагаем алгоритм уменьшения дисперсии с оценками сложности, превосходящими существующие ограничения в литературе. Во-вторых, мы рассматриваем седловые задачи конечной суммы с композитами и предлагаем несколько алгоритмов в зависимости от свойств составных членов. Когда составные члены являются гладкими, мы получаем лучшие оценки сложности, чем в литературе, включая оценки недавно предложенных почти оптимальных алгоритмов, которые не учитывают составную структуру задачи. Кроме того, наши алгоритмы позволяют разделить сложность, т. е. оценить для каждой функции в задаче количество вызовов оракула, достаточное для достижения заданной точности. Это важно, так как разные функции могут иметь разную арифметическую сложность оракула, а дорогие оракулы желательно вызывать реже, чем дешевые. Ключевым моментом во всех этих результатах является наша общая схема для седловых задач, которая может представлять самостоятельный интерес. Эта структура, в свою очередь, основана на предложенном нами ускоренном мета-алгоритме для композитной оптимизации с вероятностными неточными оракулами и вероятностной неточностью в проксимальном отображении, которые также могут представлять самостоятельный интерес.
Ключевые слова: седловая задача, минимаксная оптимизация, композитная оптимизация, ускоренные алгоритмы.
On Accelerated Methods for Saddle-Point Problems with Composite Structure
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 433-467We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear objective and different condition numbers with respect to the primal and dual variables. First, we consider such problems with smooth composite terms, one of which has finite-sum structure. For this setting we propose a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature. Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms depending on the properties of the composite terms. When the composite terms are smooth we obtain better complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal algorithms which do not consider the composite structure of the problem. If the composite terms are prox-friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity bounds to the nearly-optimal algorithm which is designed for noncomposite setting. Besides, our algorithms allow one to separate the complexity bounds, i. e. estimate, for each part of the objective separately, the number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal mapping, which may be of independent interest as well.
-
Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.
Statistically fair price for the European call options according to the discreet mean/variance model
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874Views (last year): 1.We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




