Результаты поиска по 'модель функции':
Найдено статей: 187
  1. Жлуктов С.В., Аксёнов А.А., Кураносов Н.С.
    Моделирование турбулентных сжимаемых течений в программном комплексе FlowVision
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 805-825

    В работе обсуждается возможность моделирования турбулентных сжимаемых течений газа с использованием моделей турбулентности $k-\varepsilon$ стандартная (KES), $k-\varepsilon$ FlowVision (KEFV) и SST $k-\omega$. Представлена новая версия модели турбулентности KEFV. Показаны результаты ее тестирования. Проведено численное исследование истечения сверхзвуковой перерасширенной струи из конического сопла в безграничное пространство. Результаты сравниваются с экспериментальными данными. Демонстрируется зависимость результатов от сетки. Демонстрируется зависимость результатов от турбулентности, задаваемой на входе в сопло. Делается вывод о том, что в двухпараметрических моделях турбулентности необходимо учитывать сжимаемость. Для этого подходит простой способ, предложенный Вилкоксом в 1994 г. В результате область применимости трех указанных двухпараметрических моделей заметно расширяется. Предлагаются конкретные значения констант, управляющих учетом сжимаемости в подходе Вилкокса. Эти значения рекомендуется задавать в моделях KES, KEFV и SST при моделировании сжимаемых течений.

    Дополнительно рассмотрен вопрос о том, как получать правильные характеристики сверхзвукового турбулентного течения с использованием двухпараметрических моделей турбулентности. Расчеты на разных сетках показали, что при задании ламинарного потока на входе в сопло и пристеночных функций на его поверхностях ядро потока остается ламинарным вплоть до 5-й бочки. Для получения правильных характеристик нужно либо на входе в расчетную область задавать два параметра, характеризующие турбулентность втекающего потока, либо задавать «затравочную» турбулентность в ограниченной области на выходе из сопла, охватывающей зону предполагаемого ламинарно-турбулентного перехода. Последняя возможность реализована в модели KEFV.

    Zhluktov S.V., Aksenov A.A., Kuranosov N.S.
    Simulation of turbulent compressible flows in the FlowVision software
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 805-825

    Simulation of turbulent compressible gas flows using turbulence models $k-\varepsilon$ standard (KES), $k-\varepsilon$ FlowVision (KEFV) and SST $k-\omega$ is discussed in the given article. A new version of turbulence model KEFV is presented. The results of its testing are shown. Numerical investigation of the discharge of an over-expanded jet from a conic nozzle into unlimited space is performed. The results are compared against experimental data. The dependence of the results on computational mesh is demonstrated. The dependence of the results on turbulence specified at the nozzle inlet is demonstrated. The conclusion is drawn about necessity to allow for compressibility in two-parametric turbulence models. The simple method proposed by Wilcox in 1994 suits well for this purpose. As a result, the range of applicability of the three aforementioned two-parametric turbulence models is essentially extended. Particular values of the constants responsible for the account of compressibility in the Wilcox approach are proposed. It is recommended to specify these values in simulations of compressible flows with use of models KES, KEFV, and SST.

    In addition, the question how to obtain correct characteristics of supersonic turbulent flows using two-parametric turbulence models is considered. The calculations on different grids have shown that specifying a laminar flow at the inlet to the nozzle and wall functions at its surfaces, one obtains the laminar core of the flow up to the fifth Mach disk. In order to obtain correct flow characteristics, it is necessary either to specify two parameters characterizing turbulence of the inflowing gas, or to set a “starting” turbulence in a limited volume enveloping the region of presumable laminar-turbulent transition next to the exit from the nozzle. The latter possibility is implemented in model KEFV.

  2. Гогуев М.В., Кислицын А.А.
    Моделирование траекторий временных рядов с помощью уравнения Лиувилля
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598

    Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.

    Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.

    Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.

    Goguev M.V., Kislitsyn A.A.
    Modeling time series trajectories using the Liouville equation
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 585-598

    This paper presents algorithm for modeling set of trajectories of non-stationary time series, based on a numerical scheme for approximating the sample density of the distribution function in a problem with fixed ends, when the initial distribution for a given number of steps transforms into a certain final distribution, so that at each step the semigroup property of solving the Liouville equation is satisfied. The model makes it possible to numerically construct evolving densities of distribution functions during random switching of states of the system generating the original time series.

    The main problem is related to the fact that with the numerical implementation of the left-hand differential derivative in time, the solution becomes unstable, but such approach corresponds to the modeling of evolution. An integrative approach is used while choosing implicit stable schemes with “going into the future”, this does not match the semigroup property at each step. If, on the other hand, some real process is being modeled, in which goal-setting presumably takes place, then it is desirable to use schemes that generate a model of the transition process. Such model is used in the future in order to build a predictor of the disorder, which will allow you to determine exactly what state the process under study is going into, before the process really went into it. The model described in the article can be used as a tool for modeling real non-stationary time series.

    Steps of the modeling scheme are described further. Fragments corresponding to certain states are selected from a given time series, for example, trends with specified slope angles and variances. Reference distributions of states are compiled from these fragments. Then the empirical distributions of the duration of the system’s stay in the specified states and the duration of the transition time from state to state are determined. In accordance with these empirical distributions, a probabilistic model of the disorder is constructed and the corresponding trajectories of the time series are modeled.

  3. Омарова А.Г., Бейбалаев В.Д.
    Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360

    В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.

    Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.

    Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.

    Omarova A.G., Beybalayev V.D.
    Numerical solution of the third initial-boundary value problem for the nonstationary heat conduction equation with fractional derivatives
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1345-1360

    Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.

    Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional orders are widely used, since analytical solving methods for solving are impossible. A fairly effective method for solving this kind of problem is the finite difference method, or the grid method.

    We studied the initial-boundary value problem in the rectangle $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ for the loaded differential heat equation with composition fractional derivative of Riemann – Liouville and Caputo – Gerasimov and with boundary conditions of the first and third kind. We have gotten an a priori assessment in differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. A difference analogue of the composition fractional derivative of Riemann – Liouville and Caputo –Gerasimov order $(2-\beta )$ is obtained and a difference scheme is constructed that approximates the original problem with the order $O\left(\tau +h^{2-\beta } \right)$. The convergence of the approximate solution to the exact one is proven at a rate equal to the order of approximation of the difference scheme.

  4. Тихов М.С., Бородина Т.С.
    Математическая модель и компьютерный анализ критериев однородности зависимости «доза–эффект»
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 267-273

    Данная работа посвящена сравнению двух критериев однородности: критерия χ2, основанного на таблицах сопряженности признаков 2 × 2, и критерия однородности, основанного на асимптотических распределениях суммируемых квадратичных уклонений оценок функции распределения в модели зависимости «доза–эффект». Оценка мощности критериев производится при помощи компьютерного моделирования. Для построения функций эффективности используется метод ядерной оценки регрессии, основанный на оценке Надарая–Ватсона.

    Tikhov M.S., Borodina T.S.
    Mathematical model and computer analysis of tests for homogeneity of “dose–effect” dependence
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 267-273

    The given work is devoted to the comparison of two tests for homogeneity: chi-square test based on contingency tables of 2 × 2 and test for homogeneity based on asymptotic distributions of the summarized square error of a distribution function estimators in the model of ”dose–effect” dependence. The evaluation of test power is performed by means of computer simulation. In order to design efficiency functions the method of kernel regression estimator based on Nadaray–Watson estimator is used.

    Views (last year): 6.
  5. Митин А.Л., Калашников С.В., Янковский Е.А., Аксенов А.А., Жлуктов С.В., Чернышев С.А.
    Методические аспекты численного решения задач внешнего обтекания на локально-адаптивных сетках с использованием пристеночных функций
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1269-1290

    Работа посвящена исследованию возможности повышения эффективности решения задач внешней аэродинамики. Изучаются методические аспекты применения локально-адаптивных неструктурированных расчетных сеток и пристеночных функций для численного моделирования турбулентных течений около летательных аппаратов. Интегрируются осредненные по Рейнольдсу уравнения Навье–Стокса, которые замыкаются стандартной моделью турбулентности $k–\varepsilon$. Рассматривается обтекание крылового профиля RAE 2822 турбулентным дозвуковым потоком вязкого сжимаемого газа. Расчеты проводятся в программном ВГД-комплексе FlowVision. Анализируется эффективность применения технологии сглаживания диффузионных потоков и формулы Брэдшоу для турбулентной вязкости в качестве мер, повышающих точность решения аэродинамических задач на локально-адаптивных сетках. Результаты исследования показывают, что использование технологии сглаживания диффузионных потоков приводит к существенному уменьшению расхождений в величине коэффициента лобового сопротивления между результатами расчетов и экспериментальными данными. Кроме того, обеспечивается регуляризация распределения коэффициента поверхностного трения на криволинейной поверхности профиля. Эти результаты позволяют сделать вывод о том, что данная технология является эффективным способом повышения точности расчетов на локально-адаптивных сетках. Формула Брэдшоу для динамического коэффициента турбулентной вязкости традиционно используется в модели SST $k–\omega$. В настоящей работе исследуется возможность ее применения в стандартной $k–\varepsilon$-модели турбулентности. Результаты расчетов показывают, что, с одной стороны, данная формула обеспечивает хорошее согласование суммарных аэродинамических характеристик и распределения коэффициента давления по поверхности профиля с экспериментом. Помимо этого, она значительно повышает точность моделирования течения в пограничном слое и в следе. С другой стороны, использование формулы Брэдшоу при моделировании обтекания профиля RAE 2822 приводит к занижению коэффициента поверхностного трения. Поэтому в работе делается вывод о том, что практическое применение формулы Брэдшоу требует ее предварительной валидации и калибровки на надежных экспериментальных данных для рассматриваемого класса задач. Результаты работы в целом показывают, что при использовании рассмотренных технологий численное решение задач внешнего обтекания на локально-адаптивных сетках с применением пристеночных функций обеспечивает точность, приемлемую для оперативной оценки аэродинамических характеристик, а ПК FlowVision является эффективным инструментом решения задач предварительного аэродинамического проектирования, концептуального проектирования и оптимизации аэродинамических форм.

    Mitin A.L., Kalashnikov S.V., Yankovskiy E.A., Aksenov A.A., Zhluktov S.V., Chernyshev S.A.
    Methodical questions of numerical simulation of external flows on locally-adaptive grids using wall functions
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1269-1290

    The work is dedicated to investigation of possibility to increase the efficiency of solving external aerodynamic problems. Methodical questions of using locally-adaptive grids and wall functions for numerical simulation of turbulent flows past flying vehicles are studied. Reynolds-averaged Navier–Stokes equations are integrated. The equations are closed by standard $k–\varepsilon$ turbulence model. Subsonic turbulent flow of perfect compressible viscous gas past airfoil RAE 2822 is considered. Calculations are performed in CFD software FlowVision. The efficiency of using the technology of smoothing diffusion fluxes and the Bradshaw formula for turbulent viscosity is analyzed. These techniques are regarded as means of increasing the accuracy of solving aerodynamic problems on locally-adaptive grids. The obtained results show that using the technology of smoothing diffusion fluxes essentially decreases the discrepancy between computed and experimental values of the drag coefficient. In addition, the distribution of the skin friction coefficient over the curvilinear surface of the airfoil becomes more regular. These results indicate that the given technology is an effective way to increase the accuracy of calculations on locally-adaptive grids. The Bradshaw formula for the dynamic coefficient of turbulent viscosity is traditionally used in the SST $k–\omega$ turbulence model. The possibility to implement it in the standard $k–\varepsilon$ turbulence model is investigated in the present article. The calculations show that this formula provides good agreement of integral aerodynamic characteristics and the distribution of the pressure coefficient over the airfoil surface with experimental data. Besides that, it essentially augments the accuracy of simulation of the flow in the boundary layer and in the wake. On the other hand, using the Bradshaw formula in the simulation of the air flow past airfoil RAE 2822 leads to under-prediction of the skin friction coefficient. For this reason, the conclusion is made that practical use of the Bradshaw formula requires its preliminary validation and calibration on reliable experimental data available for the considered flows. The results of the work as a whole show that using the technologies discussed in numerical solution of external aerodynamic problems on locally-adaptive grids together with wall functions provides the computational accuracy acceptable for quick assessment of the aerodynamic characteristics of a flying vehicle. So, one can deduce that the FlowVision software is an effective tool for preliminary design studies, for conceptual design, and for aerodynamic shape optimization.

  6. Способин А.В.
    Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027

    Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.

    Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.

    Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.

    Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.

    The work is devoted to numerical modeling of two-phase flows, namely, the calculation of supersonic flow around a blunt body by a viscous gas flow with an admixture of large high inertia particles. The system of unsteady Navier – Stokes equations is numerically solved by the meshless method. It uses the cloud of points in space to represent the fields of gas parameters. The spatial derivatives of gas parameters and functions are approximated by the least square method to calculate convective and viscous fluxes in the Navier – Stokes system of equations. The convective fluxes are calculated by the HLLC method. The third-order MUSCL reconstruction scheme is used to achieve high order accuracy. The viscous fluxes are calculated by the second order approximation scheme. The streamlined body surface is represented by a model of an isothermal wall. It implements the conditions for the zero velocity and zero pressure gradient, which is also modeled using the least squares method.

    Every moving body is surrounded by its own cloud of points belongs to body’s domain and moving along with it in space. The explicit three-sage Runge–Kutta method is used to solve numerically the system of gas dynamics equations in the main coordinate system and local coordinate systems of each particle.

    Two methods for the moving objects modeling with reverse impact on the gas flow have been implemented. The first one uses stationary point clouds with fixed neighbors within the same domain. When regions overlap, some nodes of one domain, for example, the boundary nodes of the particle domain, are excluded from the calculation and filled with the values of gas parameters from the nearest nodes of another domain using the least squares approximation of gradients. The internal nodes of the particle domain are used to reconstruct the gas parameters in the overlapped nodes of the main domain. The second method also uses the exclusion of nodes in overlapping areas, but in this case the nodes of another domain take the place of the excluded neighbors to build a single connected cloud of nodes. At the same time, some of the nodes are moving, and some are stationary. Nodes membership to different domains and their relative speed are taken into account when calculating fluxes.

    The results of modeling the motion of a particle in a stationary gas and the flow around a stationary particle by an incoming flow at the same relative velocity show good agreement for both presented methods.

  7. Умнов А.Е., Умнов Е.А.
    Использование функций обратных связей для решения задач параметрического программирования
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1125-1151

    Рассматривается конечномерная оптимизационная задача, постановка которой, помимо искомых переменных, содержит параметры. Ее решение есть зависимость оптимальных значений переменных от параметров. В общем случае такие зависимости не являются функциями, поскольку могут быть неоднозначными, а в функциональном случае — быть недифференцируемыми. Кроме того, область их существования может оказаться уже области определения функций в условии задачи. Эти свойства затрудняют решение как исходной задачи, так и задач, в постановку которых входят данные зависимости. Для преодоления этих затруднений обычно применяются методы типа недифференцируемой оптимизации.

    В статье предлагается альтернативный подход, позволяющий получать решения параметрических задач в форме, лишенной указанных свойств. Показывается, что такие представления могут исследоваться стандартными алгоритмами, основанными на формуле Тейлора. Данная форма есть функция, гладко аппроксимирующая решение исходной задачи. При этом величина погрешности аппроксимации регулируется специальным параметром. Предлагаемые аппроксимации строятся с помощью специальных функций, устанавливающих обратные связи между переменными и множителями Лагранжа. Приводится краткое описание этого метода для линейных задач с последующим обобщением на нелинейный случай.

    Построение аппроксимации сводится к отысканию седловой точки модифицированной функции Лагранжа исходной задачи. Показывается, что необходимые условия существования такой седловой точки подобны условиям теоремы Каруша – Куна – Таккера, но не содержат в явном виде ограничений типа неравенств и условий дополняющей нежесткости. Эти необходимые условия аппроксимацию определяют неявным образом. Поэтому для вычисления ее дифференциальных характеристик используется теорема о неявных функциях. Эта же теорема применяется для уменьшения погрешности аппроксимации.

    Особенности практической реализации метода функций обратных связей, включая оценки скорости сходимости к точному решению, демонстрируются для нескольких конкретных классов параметрических оптимизационных задач. Конкретно: рассматриваются задачи поиска глобального экстремума функций многих переменных и задачи на кратный экстремум (максимин-минимакс). Также рассмотрены оптимизационные задачи, возникающие при использовании многокритериальных математических моделей. Для каждого из этих классов приводятся демонстрационные примеры.

    Umnov A.E., Umnov E.A.
    Using feedback functions to solve parametric programming problems
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1125-1151

    We consider a finite-dimensional optimization problem, the formulation of which in addition to the required variables contains parameters. The solution to this problem is a dependence of optimal values of variables on parameters. In general, these dependencies are not functions because they can have ambiguous meanings and in the functional case be nondifferentiable. In addition, their domain of definition may be narrower than the domains of definition of functions in the condition of the original problem. All these properties make it difficult to solve both the original parametric problem and other tasks, the statement of which includes these dependencies. To overcome these difficulties, usually methods such as non-differentiable optimization are used.

    This article proposes an alternative approach that makes it possible to obtain solutions to parametric problems in a form devoid of the specified properties. It is shown that such representations can be explored using standard algorithms, based on the Taylor formula. This form is a function smoothly approximating the solution of the original problem for any parameter values, specified in its statement. In this case, the value of the approximation error is controlled by a special parameter. Construction of proposed approximations is performed using special functions that establish feedback (within optimality conditions for the original problem) between variables and Lagrange multipliers. This method is described for linear problems with subsequent generalization to the nonlinear case.

    From a computational point of view the construction of the approximation consists in finding the saddle point of the modified Lagrange function of the original problem. Moreover, this modification is performed in a special way using feedback functions. It is shown that the necessary conditions for the existence of such a saddle point are similar to the conditions of the Karush – Kuhn – Tucker theorem, but do not contain constraints such as inequalities and conditions of complementary slackness. Necessary conditions for the existence of a saddle point determine this approximation implicitly. Therefore, to calculate its differential characteristics, the implicit function theorem is used. The same theorem is used to reduce the approximation error to an acceptable level.

    Features of the practical implementation feedback function method, including estimates of the rate of convergence to the exact solution are demonstrated for several specific classes of parametric optimization problems. Specifically, tasks searching for the global extremum of functions of many variables and the problem of multiple extremum (maximin-minimax) are considered. Optimization problems that arise when using multicriteria mathematical models are also considered. For each of these classes, there are demo examples.

  8. Селищев А.А., Цибулин В.Г.
    Компактная разностная схема для анизотропной задачи конвекции Дарси
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 199-211

    Для моделирования гравитационной конвекции жидкости, насыщающей пористую среду, развивается компактная конечно-разностная схема. На основе закона Дарси с учетом анизотропии свойств проницаемости и теплопроводности рассматривается задача для прямоугольной области в переменных «функция тока» и «температура». На границах заданы условия непроницаемости и линейный по высоте профиль температуры. При определенных соотношениях между коэффициентами обратной проницаемости и теплопроводности данная система является косимметричной, при потере устойчивости механического равновесия от него ответвляется однопараметрическое семейство стационарных конвективных режимов. Разработана численная схема с конечно-разностной аппроксимацией четвертого порядка точности по пространственным координатам и с использованием метода Рунге – Кутты. Доказано, что построенная на девятиточечном шаблоне численная схема сохраняет свойство косимметрии исходной системы. Представлены результаты численного решения спектральной задачи по определению критических чисел Рэлея, отвечающих возникновению конвективных движений. Проведено сравнение с расчетами методом второго порядка точности и на основе комбинированной разностной схемы, обеспечивающей четвертый порядок аппроксимации по вертикальной координате. Показано, что с большой точностью критические числа являются двукратными при коэффициентах, обеспечивающих свойство косимметрии. Приведены результаты вычисления конвективных режимов и спектров устойчивости стационарных решений. Дана оценка эффективности предложенной компактной схемы.

    Selischev A.A., Tsybulin V.G.
    Compact finite difference scheme for anisotropic convection Darcy
    Computer Research and Modeling, 2025, v. 17, no. 2, pp. 199-211

    A compact finite difference scheme has been developed for modeling convection in a porous medium saturated with a fluid. We consider the problem for a rectangular domain with anisotropic permeability and thermal conductivity properties in terms of stream function and temperature deviation, taking into account Darcy's law. Boundary conditions of impenetrability and a linear distribution of temperature are set. This model is cosymmetric when certain conditions are imposed on the permeability and thermal conductivities. One parametric family of stationary convection regimes arises when mechanical equilibrium loses stability. A numerical method with a fourth-order finite difference approximation for spatial variables and a Runge – Kutta integrator for time has been developed. It has been proved that this scheme preserves cosymmetry. Numerical results for evaluating the critical Rayleigh number have been presented. We compare them with results obtained using a second-order finite-difference method. We show that critical Rayleigh numbers are repeated twice with very high accuracy, which proves cosymmetry preservation. Numerical evaluation of convective regimes and spectral properties are presented. The efficiency of the developed compact finite difference scheme on a nine-point stencil is assessed.

  9. Мартюшев С.Г., Шеремет М.А.
    Численный анализ конвективно-радиационного теплопереноса в замкнутой воздушной полости с локальным источником энергии
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 383-396

    Проведено математическое моделирование естественной конвекции и теплового излучения в квадратной замкнутой воздушной полости с изотермическими вертикальными стенками при наличии локального источника энергии постоянной температуры. Математическая модель построена в безразмерных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска и с учетом диатермичности воздушной среды. Получены распределения изолиний функции тока и температуры в широком диапазоне изменения определяющих параметров: число Рэлея $10^3 \leqslant Ra \leqslant 10^6$, приведенная степень черноты ограждающих стенок $0\leqslant\varepsilon < 1$, отношение длины источника энергии к размеру полости $0.2\leqslant l/L\leqslant0.6$ и время $0\leqslantτ\leqslant 100$. Установлены корреляционные соотношения для интегрального коэффициента теплообмена в зависимости от $Ra$, $ε$ и $l/L$.

    Martyushev S.G., Sheremet M.A.
    Numerical analysis of convective-radiative heat transfer in an air enclosure with a local heat source
    Computer Research and Modeling, 2014, v. 6, no. 3, pp. 383-396

    Mathematical simulation of natural convection and surface radiation in a square air enclosure having isothermal vertical walls with a local heat source of constant temperature has been carried out. Mathematical model has been formulated on the basis of the dimensionless variables such as stream function, vorticity and temperature by using the Boussinesq approximation and diathermancy of air. Distributions of streamlines and isotherms reflecting an effect of Rayleigh number $ 10^3 \leqslant Ra \leqslant 10^6 $, surface emissivity $0 \leqslant ε < 1$, ratio between the length of heat source and the size of enclosure $0.2 \leqslant l/L \leqslant 0.6$ and dimensionless time $0 \leqslant τ \leqslant 100$ on fluid flow and heat transfer have been obtained. Correlations for the average heat transfer coefficient in dependence on $Ra$, $ε$ and $l/L$ have been ascertained.

    Views (last year): 1. Citations: 5 (RSCI).
  10. Бахвалов Ю.Н., Копылов И.В.
    Обучение и оценка обобщающей способности методов интерполяции
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1023-1031

    В данной статье исследуются методы машинного обучения с определенным видом решающего правила. К ним относятся интерполяция по методу обратно взвешенных расстояний, метод интерполяции радиальными базисными функциями, метод многомерной интерполяции и аппроксимации на основе теории случайных функций, кригинг. Показано, что для данных методов существует способ быстрого переобучения «модели» при добавлении новых данных к существующим. Под «моделью» понимается построенная по обучающим данным интерполирующая или аппроксимирующая функция. Данный подход позволяет уменьшить вычислительную сложность построения обновленной «модели» с $O(n^3)$ до $O(n^2)$. Также будет исследована возможность быстрого оценивания обобщающих возможностей «модели» на обучающей выборке при помощи метода скользящего контроля leave-one-out cross-validation, устранив главный недостаток такого подхода — необходимость построения новой «модели» при каждом удалении элемента из обучающей выборки.

    Bakhvalov Y.N., Kopylov I.V.
    Training and assessment the generalization ability of interpolation methods
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1023-1031

    We investigate machine learning methods with a certain kind of decision rule. In particular, inverse-distance method of interpolation, method of interpolation by radial basis functions, the method of multidimensional interpolation and approximation, based on the theory of random functions, the last method of interpolation is kriging. This paper shows a method of rapid retraining “model” when adding new data to the existing ones. The term “model” means interpolating or approximating function constructed from the training data. This approach reduces the computational complexity of constructing an updated “model” from $O(n^3)$ to $O(n^2)$. We also investigate the possibility of a rapid assessment of generalizing opportunities “model” on the training set using the method of cross-validation leave-one-out cross-validation, eliminating the major drawback of this approach — the necessity to build a new “model” for each element which is removed from the training set.

    Views (last year): 7. Citations: 5 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"