All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Об одной модификации узлового метода характеристик
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 29-44Представлен вариант обратного метода характеристик (МОМХ), в алгоритм которого введен дополнительный дробный временной шаг, что позволяет повысить точность вычислений за счет более точной аппроксимации характеристик. Приведены расчетные формулы модифицированного метода для уравнений односкоростной модели газожидкостной смеси, с помощью которого рассчитаны одномерные, а также плоские тестовые задачи, имеющие автомодельные решения. При решении многомерных задач исходная система уравнений расщепляется на ряд одномерных подсистем, для расчета которых применяется обратный метод характеристик с дробным временным шагом. С использованием предложенного метода рассчитаны: одномерная задача распада произвольного разрыва в дисперсной среде; двумерная задача взаимодействия однородного газожидкостного потока с препятствием с присоединенным ударным скачком, а также течение с центрированной волной разрежения. Результаты численных расчетов этих задач сопоставлены с автомодельными решениями и отмечено их удовлетворительное совпадение. На примере задачи Римана с ударным скачком приведено сравнение с рядом консервативных, неконсервативных первого и повышенного порядков точности схем, из которого, в частности, следует, что представленный метод расчета вполне конкурентоспособен. Несмотря на то что применение МОМХ требует в разы больших временных затрат по сравнению с оригинальным обратным методом характеристик (ОМХ), вычисления можно проводить с увеличенным временным шагом и в ряде случаев получать более точные результаты. Отмечено, что метод с дробным временным шагом имеет преимущества в случаях, когда характеристики системы криволинейные. По этой причине для уравнений Эйлера целесообразно использовать ОМХ вместо МОМХ, поскольку в этом случае характеристики в пределах временного шага мало отличаются от прямых линий.
Ключевые слова: гиперболические модели, обратный метод характеристик, многомерный узловой метод характеристик.
About one version of the nodal method of characteristics
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 29-44A variant of the inverse method of characteristics (IMH) is presented, in whose algorithm an additional fractional time step is introduced, which makes it possible to increase the accuracy of calculations due to a more accurate approximation of the characteristics. The calculation formulas of the modified method for the equations of the one-velocity model of a gas-liquid mixture are given, with the help of which one-dimensional and also flat test problems with self-similar solutions are calculated. When solving multidimensional problems, the original system of equations is split into a number of one-dimensional subsystems, for the calculation of which the inverse method of characteristics with a fractional time step is used. Using the proposed method, the following were calculated: the one-dimensional problem of the decay of an arbitrary discontinuity in a dispersed medium; a twodimensional problem of the interaction of a homogeneous gas-liquid flow with an obstacle with an attached shock wave, as well as a flow with a centered rarefaction wave. The results of numerical calculations of these problems are compared with self-similar solutions and their satisfactory agreement is noted. On the example of the Riemann problem with a shock wave, a comparison is made with a number of conservative, non-conservative, first and higher orders of accuracy schemes, from which, in particular, it follows that the presented calculation method, i. e. MIMC, quite competitive. Despite the fact that the application of MIMC requires many times more time than the original inverse method of characteristics (IMC), calculations can be carried out with an increased time step and, in some cases, more accurate results can be obtained. It is noted that the method with a fractional time step has advantages over the IMC in cases where the characteristics of the system are significantly curvilinear. For this reason, the use of MIMC, for example, for the Euler equations is inappropriate, since for the latter the characteristics within the time step differ little from straight lines.
-
Аппроксимация решения нестационарного уравнения теплопроводности методом вероятностных непрерывных асинхронных клеточных автоматов для одномерного случая
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 293-301В статье рассматривается решение задач теплопроводности с помощью метода непрерывных асинхронных клеточных автоматов. Продемонстрировано согласование распределения температуры в образце между клеточно-автоматной моделью и точным аналитическим решением уравнения теплопереноса в определенный момент времени, что говорит о целесообразном использовании данного метода моделирования. Получена зависимость между временем одного клеточно-автоматного взаимодействия и размерностью клеточно-автоматного поля.
Approximation of the solution of the non-stationary equation of heat conductivity by the method of probabilistic continuous asynchronous cellular automats for a one-dimensional case
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 293-301Views (last year): 10. Citations: 4 (RSCI).The solution of problems of heat conductivity by means of a method of continuous asynchronous cellular automats is considered in the article. Coordination of distribution of temperature in a sample at a given time between cellular automat model and the exact analytical solution of the equation of heattransfer is shown that speaks about expedient use of this method of modelling. Dependence between time of one cellular automatic interaction and dimension of a cellular automatic field is received.
-
Численное исследование фильтрации газоконденсатной смеси в пористой среде
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 209-219В последние десятилетия важное значение приобретает разработка методов повышения эффективности извлечения углеводородов в месторождениях с нетрадиционными запасами, содержащими в больших количествах газовый конденсат. Это делает актуальным развитие методов математического моделирования, реалистично описывающих процессы фильтрации газоконденсатной смеси в пористой среде.
В данной работе рассматривается математическая модель, описывающая динамику изменения давления, скорости и концентрации компонент двухкомпонентной двухфазовой смеси, поступающей в лабораторную модель пласта, заполненную пористым веществом с известными физико-химическими свойствами. Математическая модель описывается системой нелинейных пространственно-одномерных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. Лабораторные эксперименты показывают, что в течение конечного времени система стабилизируется, что дает основание перейти к стационарной постановке задачи.
Численное решение сформулированной системы обыкновенных дифференциальных уравнений реализовано в среде Maple на основе метода Рунге–Кутты с автоматическим выбором шага. Показано, что полученные на этой основе физические параметры двухкомпонентной газоконденсатной смеси из метана и н-бутана, характеризующие моделируемую систему в режиме стабилизации, хорошо согласуются с имеющимися экспериментальными данными.
Это подтверждает реалистичность выбранного подхода и обоснованность его дальнейшего развития и применения для компьютерного моделирования неравновесных физических процессов в газоконденсатных смесях в пористой среде с целью выработки в перспективе практических рекомендаций по увеличению извлекаемости углеводородного газоконденсата из природных месторождений. В работе представлена математическая постановка системы нелинейных уравнений в частных производных и соответствующей стационарной задачи, описан метод численного исследования, обсуждаются полученные численные результаты в сравнении с экспериментальными данными.
Numerical investigation of the gas-condensate mixture flow in a porous medium
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 209-219Views (last year): 18. Citations: 2 (RSCI).In the last decades, the development of methods for increasing the efficiency of hydrocarbon extraction in fields with unconventional reserves containing large amounts of gas condensate is of great importance. This makes important the development of methods of mathematical modeling that realistically describe physical processes in a gas-condensate mixture in a porous medium.
In the paper, a mathematical model which describes the dynamics of the pressure, velocity and concentration of the components of a two-component two-phase mixture entering a laboratory model of plast filled with a porous substance with known physicochemical properties is considered. The mathematical model is based on a system of nonlinear spatially one-dimensional partial differential equations with the corresponding initial and boundary conditions. Laboratory experiments show that during a finite time the system stabilizes, what gives a basis to proceed to the stationary formulation of the problem.
The numerical solution of the formulated system of ordinary differential equations is realized in the Maple environment on the basis of the Runge–Kutta procedure. It is shown that the physical parameters of the gascondensate mixture, which characterize the modeled system in the stabilization regime, obtained on this basis, are in good agreement with the available experimental data. This confirms the correctness of the chosen approach and the validity of its further application and development for computer modeling of physical processes in gas-condensate mixtures in a porous medium. The paper presents a mathematical formulation of the system of partial differential equations and of respective system stationary equations, describes the numerical approach, and discusses the numerical results obtained in comparison with experimental data.
-
Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.
Ключевые слова: популяционная динамика, нелинейные параболические уравнения, косимметрия, сосуществование видов, метод конечных разностей.
The cosymmetric approach to the analysis of spatial structure of populations with amount of taxis
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 661-671Views (last year): 2. Citations: 1 (RSCI).We consider a mathematical model describing the competition for a heterogeneous resource of two populations on a one-dimensional area. Distribution of populations is governed by diffusion and directed migration, species growth obeys to the logistic law. We study the corresponding problem of nonlinear parabolic equations with variable coefficients (function of a resource, parameters of growth, diffusion and migration). Approach on the theory the cosymmetric dynamic systems of V. Yudovich is applied to the analysis of population patterns. Conditions on parameters for which the problem under investigation has nontrivial cosymmetry are analytically derived. Numerical experiment is used to find an emergence of continuous family of steady states when cosymmetry takes place. The numerical scheme is based on the finite-difference discretization in space using the balance method and integration on time by Runge-Kutta method. Impact of diffusive and migration parameters on scenarios of distribution of populations is studied. In the vicinity of the line, corresponding to cosymmetry, neutral curves for diffusive parameters are calculated. We present the mappings with areas of diffusive parameters which correspond to scenarios of coexistence and extinction of species. For a number of migration parameters and resource functions with one and two maxima the analysis of possible scenarios is carried out. Particularly, we found the areas of parameters for which the survival of each specie is determined by initial conditions. It should be noted that dynamics may be nontrivial: after starting decrease in densities of both species the growth of only one population takes place whenever another specie decreases. The analysis has shown that areas of the diffusive parameters corresponding to various scenarios of population patterns are grouped near the cosymmetry lines. The derived mappings allow to explain, in particular, effect of a survival of population due to increasing of diffusive mobility in case of starvation.
-
Моделирование смешанной конвекции жидкости с переменной вязкостью в частично пористом горизонтальном канале с источником тепловыделения
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 95-107Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.
Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.
Ключевые слова: смешанная конвекция, зависящая от температуры вязкость, тепловыделяющий источник, пористая среда, открытый канал, метод конечных разностей.
Simulation of mixed convection of a variable viscosity fluid in a partially porous horizontal channel with a heat-generating source
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 95-107Views (last year): 34.Numerical study of unsteady mixed convection in an open partially porous horizontal channel with a heatgenerating source was performed. The outer surfaces of horizontal walls of finite thickness were adiabatic. In the channel there was a Newtonian heat-conducting fluid with a temperature-dependent viscosity. The discrete heatconducting and heat-generating source is located inside the bottom wall. The temperature of the fluid phase was equal to the temperature of the porous medium, and calculations were performed using the local thermal equilibrium model. The porous insertion is isotropic, homogeneous and permeable to fluid. The Darcy–Brinkman model was used to simulate the transport process within the porous medium. Governing equations formulated in dimensionless variables “stream function – vorticity – temperature” using the Boussinesq approximation were solved numerically by the finite difference method. The vorticity dispersion equation and energy equation were solved using locally one-dimensional Samarskii scheme. The diffusive terms were approximated by central differences, while the convective terms were approximated using monotonic Samarskii scheme. The difference equations were solved by the Thomas algorithm. The approximated Poisson equation for the stream function was solved separately by successive over-relaxation method. Optimal value of the relaxation parameter was found on the basis of computational experiments. The developed computational code was tested using a set of uniform grids and verified by comparing the results obtained of other authors.
Numerical analysis of unsteady mixed convection of variable viscosity fluid in the horizontal channel with a heat-generating source was performed for the following parameters: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Distributions of the isolines of the stream function, temperature and the dependences of the average Nusselt number and the average temperature inside the heater were obtained in a steady-state regime, when the stationary picture of the flow and heat transfer is observed. As a result we showed that an addition of a porous insertion leads to an intensification of heat removal from the surface of the energy source. The increase in the porous insertion sizes and the use of working fluid with different thermal characteristics, lead to a decrease in temperature inside the source.
-
Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.
В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.
Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.
In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.
-
Уравнения диффузии–реакции–адвекции для системы «хищник–жертва» в гетерогенной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1161-1176Анализируются варианты учета неоднородности среды при компьютерном моделировании динамики хищника и жертвы на основе системы уравнений реакции–диффузии–адвекции. Локальное взаимодействие видов (члены реакции) описывается логистическим законом роста для жертвы и соотношениями Беддингтона – ДеАнгелиса, частными случаями которых являются функциональный отклик Холлинга второго рода и модель Ардити – Гинзбурга. Рассматривается одномерная по пространству задача для неоднородного ресурса (емкости среды) и трех видов таксиса (жертвы на ресурс и от хищника, хищника к жертве). Используется аналитический подход для исследования устойчивости стационарных решений в случае локального взаимодействия (бездиффузионный подход) и вычисления на основе метода прямых для учета диффузионных и адвективных процессов. Сравнение критических значений параметра смертности хищников показало, что при постоянных коэффициентах в соотношениях Беддингтона – ДеАнгелиса получаются переменные по пространственной координате критические величины, а для модели Ардити – Гинзбурга данный эффект не наблюдается. Предложена модификация членов реакции, позволяющая учесть неоднородность ресурса. Представлены численные результаты по динамике видов для больших и малых миграционных коэффициентов, демонстрирующие снижение влияния вида локальных членов на формирующиеся пространственно-временные распределения популяций. Проанализированы бифуркационные переходы при изменении параметров диффузии–адвекции и членов реакции.
Diffusion–reaction–advection equations for the predator–prey system in a heterogeneous environment
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1161-1176We analyze variants of considering the inhomogeneity of the environment in computer modeling of the dynamics of a predator and prey based on a system of reaction-diffusion–advection equations. The local interaction of species (reaction terms) is described by the logistic law for the prey and the Beddington –DeAngelis functional response, special cases of which are the Holling type II functional response and the Arditi – Ginzburg model. We consider a one-dimensional problem in space for a heterogeneous resource (carrying capacity) and three types of taxis (the prey to resource and from the predator, the predator to the prey). An analytical approach is used to study the stability of stationary solutions in the case of local interaction (diffusionless approach). We employ the method of lines to study diffusion and advective processes. A comparison of the critical values of the mortality parameter of predators is given. Analysis showed that at constant coefficients in the Beddington –DeAngelis model, critical values are variable along the spatial coordinate, while we do not observe this effect for the Arditi –Ginzburg model. We propose a modification of the reaction terms, which makes it possible to take into account the heterogeneity of the resource. Numerical results on the dynamics of species for large and small migration coefficients are presented, demonstrating a decrease in the influence of the species of local members on the emerging spatio-temporal distributions of populations. Bifurcation transitions are analyzed when changing the parameters of diffusion–advection and reaction terms.
-
Устойчивость дна в напорных каналах
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.
Bottom stability in closed conduits
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1061-1068Views (last year): 1. Citations: 2 (RSCI).In this paper on the basis of the riverbed model proposed earlier the one-dimensional stability problem of closed flow channel with sandy bed is solved. The feature of the investigated problem is used original equation of riverbed deformations, which takes into account the influence of mechanical and granulometric bed material characteristics and the bed slope when riverbed analyzing. Another feature of the discussed problem is the consideration together with shear stress influence normal stress influence when investigating the riverbed instability. The analytical dependence determined the wave length of fast-growing bed perturbations is obtained from the solution of the sandy bed stability problem for closed flow channel. The analysis of the obtained analytical dependence is performed. It is shown that the obtained dependence generalizes the row of well-known empirical formulas: Coleman, Shulyak and Bagnold. The structure of the obtained analytical dependence denotes the existence of two hydrodynamic regimes characterized by the Froude number, at which the bed perturbations growth can strongly or weakly depend on the Froude number. Considering a natural stochasticity of the waves movement process and the presence of a definition domain of the solution with a weak dependence on the Froude numbers it can be concluded that the experimental observation of the of the bed waves movement development should lead to the data acquisition with a significant dispersion and it occurs in reality.
-
Численное моделирование динамики распределения плотности клеточной ткани с учетом влияния хемотаксиса и деформации внеклеточного матрикса
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1433-1445В настоящей работе рассматривается математическая модель динамики клеточной ткани. В первой части дается вывод модели, основные положения и постановка задачи. Во второй части итоговая система исследуется численно и приводятся результаты моделирования. Постулируется, что клеточная ткань есть трехфазная среда, которая состоит из твердого скелета (представляющего собой внеклеточный матрикс), клеток и внеклеточной жидкости. Ко всему прочему учитывается наличие питательных веществ в ткани. В основу модели положены уравнения сохранения массы с учетом обмена масс, уравнения сохранения импульса для каждой фазы, а также уравнение диффузии для питательных веществ. В уравнении, описывающем клеточную фазу, также учитывается слагаемое, описывающее химическое воздействие на ткань, которое называется хемотаксисом — движением клеток, вызванным градиентом концентрации химических веществ. Исходная система уравнений сводится к системе трех уравнений для нахождения пористости, насыщенности клеток и концентрации питательных веществ. Данные уравнения дополняются начальными и краевыми условиями. В одномерном случае в начальный момент времени задается распределение пористости, концентрации клеточной фазы и питательных веществ. На левой границе задана постоянная концентрация питательных веществ, что соответствует, например, поступлению кислорода из сосуда, а также поток концентрации клеток на ней равен нулю. На правой границе рассматриваются два типа условий: первое — условие непроницаемости правой границы, второе — условие постоянной концентрации клеточной фазы и нулевой поток концентрации питательных веществ. В обоих случаях условия для матрикса и внеклеточной жидкости одинаковы, предполагается наличие источника питательных веществ (кровеносного сосуда) на левой границе области моделирования. В результате моделирования было выявлено, что хемотаксис оказывает значительное влияние на рост ткани. При отсутствии хемотаксиса зона уплотнения распространяется на всю область моделирования, но при увеличении влияния хемотаксиса на ткань образуется область деградации, в которой концентрация клеток становится ниже начальной.
Ключевые слова: математическое моделирование, биологическая ткань, обмен масс, фильтрация, пористость.
Numerical simulation of the dynamics of the density distribution of cellular tissue, taking into account the influence of chemotaxis and deformation of the extracellular matrix
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1433-1445In this paper, a mathematical model of cellular tissue dynamics is considered. The first part gives the conclusion of the model, the main provisions and the formulation of the problem. In the second part, the final system is investigated numerically and the simulation results are presented. It is postulated that cellular tissue is a three-phase medium that consists of a solid skeleton (which is an extracellular matrix), cells and extracellular fluid. In addition, the presence of nutrients in the tissue is taken into account. The model is based on the equations of conservation of mass, taking into account mass exchange, the equations of conservation of momentum for each phase, as well as the diffusion equation for nutrients. The equation describing the cellular phase also takes into account the term describing the chemical effect on the tissue, which is called chemotaxis — the movement of cells caused by a gradient in the concentration of chemicals. The initial system of equations is reduced to a system of three equations for finding porosity, cell saturation and nutrient concentration. These equations are supplemented by initial and boundary conditions. In the one-dimensional case, the distribution of porosity, concentration of the cell phase and nutrients is set at the initial moment of time. A constant concentration of nutrients is set on the left border, which corresponds, for example, to the supply of oxygen from the vessel, as well as the flow of cell concentration on it is zero. Two types of conditions are considered at the right boundary: the first is the condition of impermeability of the right boundary, the second is the condition of constant concentration of the cell phase and zero flow of nutrient concentration. In both cases, the conditions for the matrix and extracellular fluid are the same, it is assumed that there is a source of nutrients (blood vessel) on the left border of the modeling area. As a result of modeling, it was revealed that chemotaxis has a significant effect on tissue growth. In the absence of chemotaxis, the compaction zone extends to the entire modeling area, but with an increase in the effect of chemotaxis on the tissue, a degradation area is formed in which the concentration of cells becomes lower than the initial one.
-
Численное исследование механизмов распространения пульсирующей газовой детонации в неоднородной среде
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1263-1282В последние несколько лет наблюдаются значительные успехи в области создания двигательных установок для летательных аппаратов, основанных на сжигании топлива во вращающейся детонационной волне. В научных лабораторияхпо всему миру проводятся как фундаментальные исследования, связанные, например, с вопросами смесеобразования при раздельной подаче топлива и окислителя, так и прикладные по доводке уже существующих прототипов. В работе приводится краткий обзор основных результатов наиболее значимых недавних расчетных работ по изучению распространения одномерной пульсирующей волны газовой детонации в среде с неравномерным распределением параметров. Отмечаются общие тенденции, которые наблюдали авторы данных работ. В этих работах показано, что наличие возмущений параметров перед фронтом волны может приводить к регуляризации и к резонансному усилению пульсаций параметров за ее фронтом. В результате возникает привлекательная с практической точки зрения возможность влиять на устойчивость детонационной волны и управлять ею. Настоящая работа направлена на создание инструмента, который позволяет изучать газодинамические механизмы данных эффектов.
Математическая модель основана на одномерных уравнениях Эйлера, дополненных одностадийной моделью кинетики химических реакций. Определяющая система уравнений записана в системе координат, связанной с лидирующим скачком, что приводит к необходимости добавить уравнение для скорости лидирующей волны. Предложен способ интегрирования данного уравнения, учитывающий изменение плотности среды перед фронтом волны. Таким образом, предложен вычислительный алгоритм для моделирования распространения детонации в неоднородной среде.
С использованием разработанного алгоритма проведено численное исследование распространения устойчивой детонации в среде с переменной плотностью. Исследован режим с относительно небольшой амплитудой колебаний плотности, при котором колебания параметров за фронтом детонационной волны происходят с частотой колебаний плотности среды. Показана связь периода колебаний параметров со временем прохождения характеристик C+ и C0 по области, которую условно можно считать зоной индукции. Сдвиг по фазе между колебаниями скорости детонационной волны и плотности газа перед волной оценен как максимальное время прохождения характеристики C+ по зоне индукции.
Ключевые слова: математическое моделирование, детонационная волна, уравнения Эйлера, одностадийная химическая кинетика, пульсации, неоднородная среда.
Numerical study of the mechanisms of propagation of pulsating gaseous detonation in a non-uniform medium
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1263-1282In the last few years, significant progress has been observed in the field of rotating detonation engines for aircrafts. Scientific laboratories around the world conduct both fundamental researches related, for example, to the issues of effective mixing of fuel and oxidizer with the separate supply, and applied development of existing prototypes. The paper provides a brief overview of the main results of the most significant recent computational work on the study of propagation of a onedimensional pulsating gaseous detonation wave in a non-uniform medium. The general trends observed by the authors of these works are noted. In these works, it is shown that the presence of parameter perturbations in front of the wave front can lead to regularization and to resonant amplification of pulsations behind the detonation wave front. Thus, there is an appealing opportunity from a practical point of view to influence the stability of the detonation wave and control it. The aim of the present work is to create an instrument to study the gas-dynamic mechanisms of these effects.
The mathematical model is based on one-dimensional Euler equations supplemented by a one-stage model of the kinetics of chemical reactions. The defining system of equations is written in the shock-attached frame that leads to the need to add a shock-change equations. A method for integrating this equation is proposed, taking into account the change in the density of the medium in front of the wave front. So, the numerical algorithm for the simulation of detonation wave propagation in a non-uniform medium is proposed.
Using the developed algorithm, a numerical study of the propagation of stable detonation in a medium with variable density as carried out. A mode with a relatively small oscillation amplitude is investigated, in which the fluctuations of the parameters behind the detonation wave front occur with the frequency of fluctuations in the density of the medium. It is shown the relationship of the oscillation period with the passage time of the characteristics C+ and C0 over the region, which can be conditionally considered an induction zone. The phase shift between the oscillations of the velocity of the detonation wave and the density of the gas before the wave is estimated as the maximum time of passage of the characteristic C+ through the induction zone.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




