All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Обучение и оценка обобщающей способности методов интерполяции
Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1023-1031В данной статье исследуются методы машинного обучения с определенным видом решающего правила. К ним относятся интерполяция по методу обратно взвешенных расстояний, метод интерполяции радиальными базисными функциями, метод многомерной интерполяции и аппроксимации на основе теории случайных функций, кригинг. Показано, что для данных методов существует способ быстрого переобучения «модели» при добавлении новых данных к существующим. Под «моделью» понимается построенная по обучающим данным интерполирующая или аппроксимирующая функция. Данный подход позволяет уменьшить вычислительную сложность построения обновленной «модели» с $O(n^3)$ до $O(n^2)$. Также будет исследована возможность быстрого оценивания обобщающих возможностей «модели» на обучающей выборке при помощи метода скользящего контроля leave-one-out cross-validation, устранив главный недостаток такого подхода — необходимость построения новой «модели» при каждом удалении элемента из обучающей выборки.
Ключевые слова: машинное обучение, интерполяция, случайная функция, система линейных уравнений, кросс-валидация.
Training and assessment the generalization ability of interpolation methods
Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1023-1031Views (last year): 7. Citations: 5 (RSCI).We investigate machine learning methods with a certain kind of decision rule. In particular, inverse-distance method of interpolation, method of interpolation by radial basis functions, the method of multidimensional interpolation and approximation, based on the theory of random functions, the last method of interpolation is kriging. This paper shows a method of rapid retraining “model” when adding new data to the existing ones. The term “model” means interpolating or approximating function constructed from the training data. This approach reduces the computational complexity of constructing an updated “model” from $O(n^3)$ to $O(n^2)$. We also investigate the possibility of a rapid assessment of generalizing opportunities “model” on the training set using the method of cross-validation leave-one-out cross-validation, eliminating the major drawback of this approach — the necessity to build a new “model” for each element which is removed from the training set.
-
Гипотеза об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 305-314В данной работе приводятся нижние оценки скорости сходимости для класса численных методов выпуклой оптимизации первого порядка и выше, т. е. использующих градиент и старшие производные. Обсуждаются вопросы достижимости данных оценок. Приведенные в статье оценки замыкают известные на данный момент результаты в этой области. Отметим, что замыкание осуществляется без должного обоснования, поэтому в той общности, в которой данные оценки приведены в статье, их стоит понимать как гипотезу. Опишембо лее точно основной результат работы. Пожалуй, наиболее известнымм етодом второго порядка является метод Ньютона, использующий информацию о градиенте и матрице Гессе оптимизируемой функции. Однако даже для сильно выпуклых функций метод Ньютона сходится лишь локально. Глобальная сходимость метода Ньютона обеспечивается с помощью кубической регуляризации оптимизируемой на каждом шаге квадратичной модели функции [Nesterov, Polyak, 2006]. Сложность решения такой вспомогательной задачи сопоставима со сложностью итерации обычного метода Ньютона, т. е. эквивалентна по порядку сложности обращения матрицы Гессе оптимизируемой функции. В 2008 году Ю. Е. Нестеровымбыл предложен ускоренный вариант метода Ньютона с кубической регуляризацией [Nesterov, 2008]. В 2013 г. Monteiro – Svaiter сумели улучшить оценку глобальной сходимости ускоренного метода с кубической регуляризацией [Monteiro, Svaiter, 2013]. В 2017 году Arjevani – Shamir – Shiff показали, что оценка Monteiro – Svaiter оптимальна (не может быть улучшена более чем на логарифми- ческий множитель на классе методов 2-го порядка) [Arjevani et al., 2017]. Также удалось получить вид нижних оценок для методов порядка $p ≥ 2$ для задач выпуклой оптимизации. Отметим, что при этом для сильно выпуклых функций нижние оценки были получены только для методов первого и второго порядка. В 2018 году Ю. Е. Нестеров для выпуклых задач оптимизации предложил методы 3-го порядка, которые имеют сложность итерации сопоставимую со сложностью итерации метода Ньютона и сходятся почти по установленным нижним оценкам [Nesterov, 2018]. Таким образом, было показано, что методы высокого порядка вполне могут быть практичными. В данной работе приводятся нижние оценки для методов высокого порядка $p ≥ 3$ для сильно выпуклых задач безусловной оптимизации. Работа также может рассматриваться как небольшой обзор современного состояния развития численных методов выпуклой оптимизации высокого порядка.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, чебышёвские методы, сверхлинейная сходимость.
A hypothesis about the rate of global convergence for optimal methods (Newton’s type) in smooth convex optimization
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 305-314Views (last year): 21. Citations: 1 (RSCI).In this paper we discuss lower bounds for convergence of convex optimization methods of high order and attainability of this bounds. We formulate a hypothesis that covers all the cases. It is noticeable that we provide this statement without a proof. Newton method is the most famous method that uses gradient and Hessian of optimized function. However, it converges locally even for strongly convex functions. Global convergence can be achieved with cubic regularization of Newton method [Nesterov, Polyak, 2006], whose iteration cost is comparable with iteration cost of Newton method and is equivalent to inversion of Hessian of optimized function. Yu.Nesterov proposed accelerated variant of Newton method with cubic regularization in 2008 [Nesterov, 2008]. R.Monteiro and B. Svaiter managed to improve global convergence of cubic regularized method in 2013 [Monteiro, Svaiter, 2013]. Y.Arjevani, O. Shamir and R. Shiff showed that convergence bound of Monteiro and Svaiter is optimal (cannot be improved by more than logarithmic factor with any second order method) in 2017 [Arjevani et al., 2017]. They also managed to find bounds for convex optimization methods of p-th order for $p ≥ 2$. However, they got bounds only for first and second order methods for strongly convex functions. In 2018 Yu.Nesterov proposed third order convex optimization methods with rate of convergence that is close to this lower bounds and with similar to Newton method cost of iteration [Nesterov, 2018]. Consequently, it was showed that high order methods can be practical. In this paper we formulate lower bounds for p-th order methods for $p ≥ 3$ for strongly convex unconstrained optimization problems. This paper can be viewed as a little survey of state of the art of high order optimization methods.
-
Оценка вероятности спонтанного синтеза вычислительных структур применительно к реализации параллельной обработки информации
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 677-696Мы рассматриваем модель спонтанного формирования вычислительной структуры в мозге человека для решения заданного класса задач в процессе выполнения серии однотипных заданий. Модель основана на специальном определении числовой меры сложности алгоритма решения. Эта мера обладает информационным свойством: сложность вычислительной структуры, состоящей из двух независимых структур, равна сумме сложностей этих структур. Тогда вероятность спонтанного возникновения структуры экспоненциально зависит от сложности структуры. Коэффициент при экспоненте требует экспериментального определения для каждого типа задач. Он может зависеть от формы предъявления исходных данных и от процедуры выдачи результата. Этот метод оценки применен к результатам серии экспериментов, в которых определялась стратегия решения человеком серии однотипных задач с растущим числом исходных данных. Эти эксперименты были описаны в ранее изданных работах. Рассматривались две основные стратегии: последовательное выполнение вычислительного алгоритма или использование параллельных вычислений в тех задачах, где это эффективно. Эти стратегии различаются схемами проведения вычислений. Используя оценку сложности схем, можно по эмпирической вероятности одной из стратегий рассчитать вероятность другой. Проведенные вычисления показали хорошее совпадение расчетной и эмпирической вероятности. Это подтверждает гипотезу о спонтанном формировании структур, решающих задачу, в процессе начальной тренировки человека. Работа содержит краткое описание экспериментов, подробные вычислительные схемы и строгое определение меры сложности вычислительных структур и вывод зависимости вероятности формирования структуры от ее сложности.
Ключевые слова: алгоритм, вычислительная структура, итеративная структура, сложность, вероятность, инженерная психология, статистика.
Estimation of the probability of spontaneous synthesis of computational structures in relation to the implementation of parallel information processing
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 677-696We consider a model of spontaneous formation of a computational structure in the human brain for solving a given class of tasks in the process of performing a series of similar tasks. The model is based on a special definition of a numerical measure of the complexity of the solution algorithm. This measure has an informational property: the complexity of a computational structure consisting of two independent structures is equal to the sum of the complexities of these structures. Then the probability of spontaneous occurrence of the structure depends exponentially on the complexity of the structure. The exponential coefficient requires experimental determination for each type of problem. It may depend on the form of presentation of the source data and the procedure for issuing the result. This estimation method was applied to the results of a series of experiments that determined the strategy for solving a series of similar problems with a growing number of initial data. These experiments were described in previously published papers. Two main strategies were considered: sequential execution of the computational algorithm, or the use of parallel computing in those tasks where it is effective. These strategies differ in how calculations are performed. Using an estimate of the complexity of schemes, you can use the empirical probability of one of the strategies to calculate the probability of the other. The calculations performed showed a good match between the calculated and empirical probabilities. This confirms the hypothesis about the spontaneous formation of structures that solve the problem during the initial training of a person. The paper contains a brief description of experiments, detailed computational schemes and a strict definition of the complexity measure of computational structures and the conclusion of the dependence of the probability of structure formation on its complexity.
-
Новый алгоритм объединения решений подзадач в задаче коммивояжера
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 45-58Традиционные методы решения задачи коммивояжера не являются эффективными для задач высокой размерности из-за их высокой вычислительной сложности. Одним из эффективных способов решения этой проблемы является декомпозиционный подход, который включает в себя три основных этапа: кластеризацию вершин, решение подзадач внутри каждого кластера и последующее объединение полученных решений в итоговое. В данной статье основное внимание уделяется третьему этапу — объединению циклов решений подзадач, поскольку этому этапу не всегда уделяется должное внимание, что приводит к менее точному итоговому решению. В статье предлагается новый модифицированный алгоритм Сигала для объединения циклов. Для оценки его эффективности проводится сравнение с двумя алгоритмами объединения циклов: метод соединения средних точек ребер и алгоритм на основе близости центроидов кластеров. Исследуется зависимость качества решения подзадач на алгоритмы объединения циклов. Модифицированный алгоритм Сигала выполняет попарное объединение кластеров, минимизируя количество пересечений и общее расстояние. Метод центроидов ориентирован на соединение кластеров на основе близости центроидов, а алгоритм с использованием средних точек оценивает расстояние между средними точками ребер. Также были рассмотрены два типа кластеризации: алгоритмы k-means и affinity propagation. Для проверки эффективности предложенного алгоритма были проведены численные эксперименты на наборе данных TSPLIB с различным количеством городов. В исследовании анализируются ошибки, вызванные порядком объединения кластеров, качеством решения подзадач и количеством кластеров. Эксперименты показали, что модифицированный алгоритм Сигала демонстрирует наименьшую медиану итогового расстояния и наиболее устойчивые результаты по сравнению с другими методами. Результаты указывают на большую устойчивость качества конечного решения, полученным модифицированным алгоритмом Сигала, от последовательности объединения кластеров. Повышение качества решения подзадачи обычно приводит к линейному улучшению конечного решения, но используемый алгоритм объединения редко влияет на степень этого улучшения.
Ключевые слова: задача коммивояжера, объединение циклов, метод k-средних, метод распространения близости, декомпозиция.
Solving traveling salesman problem via clustering and a new algorithm for merging tours
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 45-58Traditional methods for solving the traveling salesman problem are not effective for high-dimensional problems due to their high computational complexity. One of the most effective ways to solve this problem is the decomposition approach, which includes three main stages: clustering vertices, solving subproblems within each cluster and then merging the obtained solutions into a final solution. This article focuses on the third stage — merging cycles of solving subproblems — since this stage is not always given sufficient attention, which leads to less accurate final solutions of the problem. The paper proposes a new modified Sigal algorithm for merging cycles. To evaluate its effectiveness, it is compared with two algorithms for merging cycles — the method of connecting midpoints of edges and an algorithm based on closeness of cluster centroids. The dependence of quality of solving subproblems on algorithms used for merging cycles is investigated. Sigal’s modified algorithm performs pairwise clustering and minimizes total distance. The centroid method focuses on connecting clusters based on closeness of centroids, and an algorithm using mid-points estimates the distance between mid-points of edges. Two types of clustering — k-means and affinity propagation — were also considered. Numerical experiments were performed using the TSPLIB dataset with different numbers of cities and topologies to test effectiveness of proposed algorithm. The study analyzes errors caused by the order in which clusters were merged, the quality of solving subtasks and number of clusters. Experiments show that the modified Sigal algorithm has the smallest median final distance and the most stable results compared to other methods. Results indicate that the quality of the final solution obtained using the modified Sigal algorithm is more stable depending on the sequence of merging clusters. Improving the quality of solving subproblems usually results in linear improvement of the final solution, but the pooling algorithm rarely affects the degree of this improvement.
-
Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.
Ключевые слова: системы нелинейных уравнений, нелинейная регрессия, метод Гаусса–Ньютона, алгоритм Левенберга–Марквардта, методы доверительной области, невыпуклая оптимизация, неточное проксимальное отображение, неточный оракул, условие Поляка–Лоясиевича, оценка сложности.
Modified Gauss–Newton method for solving a smooth system of nonlinear equations
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.
-
Редукция дисперсии для минимаксных задач с небольшой размерностью одной из переменных
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 257-275Статья посвящена выпукло-вогнутым седловым задачам, в которых целевая функция является суммой большого числа слагаемых. Такие задачи привлекают значительное внимание математического сообщества в связи с множеством приложений в машинном обучении, включая adversarial learning, adversarial attacks и robust reinforcement learning, и это лишь некоторые из них. Отдельные функции в сумме обычно представляют собой ошибку, связанную с объектом из выборки. Кроме того, формулировка допускает (возможно, негладкий) композитный член. Такие слагаемые часто отражают регуляризацию в задачах машинного обучения. Предполагается, что размерность одной из групп переменных относительно мала (около сотни или меньше), а другой — велика. Такой случай возникает, например, при рассмотрении двойственной формулировки задачи минимизации с умеренным числом ограничений. Предлагаемый подход основан на использовании метода секущей плоскости Вайды для минимизации относительно внешнего блока переменных. Этот алгоритм оптимизации особенно эффективен, когда размерность задачи не очень велика. Неточный оракул для метода Вайды вычисляется через приближенное решение внутренней задачи максимизации, которая решается ускоренным алгоритмом с редукцией дисперсии Katyusha. Таким образом, мы используем структуру задачи для достижения быстрой сходимости. В исследовании получены отдельные оценки сложности для градиентов различных компонент относительно различных переменных. Предложенный подход накладывает слабые предположения о целевой функции. В частности, не требуется ни сильной выпуклости, ни гладкости относительно низкоразмерной группы переменных. Количество шагов предложенного алгоритма, а также арифметическая сложность каждого шага явно зависят от размерности внешней переменной, отсюда предположение, что она относительно мала.
Ключевые слова: седловые задачи, методы первого порядка, методы секущей плоскости, редукция дисперсии.
Variance reduction for minimax problems with a small dimension of one of the variables
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 257-275The paper is devoted to convex-concave saddle point problems where the objective is a sum of a large number of functions. Such problems attract considerable attention of the mathematical community due to the variety of applications in machine learning, including adversarial learning, adversarial attacks and robust reinforcement learning, to name a few. The individual functions in the sum usually represent losses related to examples from a data set. Additionally, the formulation admits a possibly nonsmooth composite term. Such terms often reflect regularization in machine learning problems. We assume that the dimension of one of the variable groups is relatively small (about a hundred or less), and the other one is large. This case arises, for example, when one considers the dual formulation for a minimization problem with a moderate number of constraints. The proposed approach is based on using Vaidya’s cutting plane method to minimize with respect to the outer block of variables. This optimization algorithm is especially effective when the dimension of the problem is not very large. An inexact oracle for Vaidya’s method is calculated via an approximate solution of the inner maximization problem, which is solved by the accelerated variance reduced algorithm Katyusha. Thus, we leverage the structure of the problem to achieve fast convergence. Separate complexity bounds for gradients of different components with respect to different variables are obtained in the study. The proposed approach is imposing very mild assumptions about the objective. In particular, neither strong convexity nor smoothness is required with respect to the low-dimensional variable group. The number of steps of the proposed algorithm as well as the arithmetic complexity of each step explicitly depend on the dimensionality of the outer variable, hence the assumption that it is relatively small.
-
Подходы к созданию точных геометрических моделей стальных канатов в среде Gmsh с использованием ядра OpenCascade Core Technology
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1399-1415В статье рассмотрены проблемы подготовки точных геометрических моделей стальных канатов, то есть геометрических моделей, основанных на математических моделях, позволяющих повторять геометрию моделируемого каната в трехмерном пространстве без существенных упрощений или условностей, с учетом целевого назначения модели. Предложены подходы к созданию точных геометрических моделей стальных канатов, не имеющих принципиальных ограничений по внедрению в расчетные области и дальнейшему построению конечно-элементных моделей на их основе. Рассмотрены обобщенная параметризованная геометрическая модель канатов одинарной и двойной свивки и ее алгоритмическая реализация с помощью ядра геометрического моделирования ОpenCASCADE Core Technology в среде Gmsh (свободно распространяемое программное обеспечение с открытым исходным кодом). Обозначена проблематика использования табличных данных из государственных и отраслевых стандартов сортамента стальных канатов как исходных данных для построения геометрических моделей стальных канатов. Разработаны методы априорной проверки коллизий геометрической модели на основе исходных данных геометрической модели и методы апостериорной проверки на основе булевых операций над телами проволок каната для выявления некорректных результатов генерации моделей тел проволок с криволинейными боковыми поверхностями на основе алгоритма последовательного иерархического построения отдельных проволок пряди и последовательного копирования прядей. Показаны особенности процесса построения геометрических моделей проволок каната различными методами экструзии: через последовательность образующих с формированием тела, ограниченного криволинейными поверхностями, через последовательность образующих с формированием тела, ограниченного линейно-аппроксимированными поверхностями, и экструзией одной образующей вдоль направляющей. Выполнена оценка вычислительной сложности процесса построения геометрических моделей и необходимого объема оперативной памяти ЭВМ для двух наиболее универсальных методов экструзии тел проволок. Разработан метод оценки значения шага расстановки образующих и исследовано влияние его значения на вычислительную сложность процедуры построения отдельных проволок каната. Даны рекомендации по выбору значения радиального зазора между проволоками. Показана алгоритмическая реализация метода поиска коллизий геометрической модели стального каната в неинтерактивном режиме и предложены подходы к формированию процедур обработки коллизий. Предложенные методы и подходы могут быть представлены в виде программных модулей как для исполнения в среде Gmsh, так и для иной среды, использующей ядро геометрического моделирования OpenCascade Core Technology, и позволяют автоматизировать построение точных геометрических моделей стальных канатов в любой конфигурации без принципиальных ограничений по последующему применению, как обособленному, так и в виде объектов (примитивов), пригодных для внедрения в стороннюю модель.
Ключевые слова: стальной канат, геометрическаямо дель, экструзия, булевы операции, метод конечных элементов.
Approaches to creating precise geometric models of steel wire ropes in the Gmsh environment using the OpenCascade Core Technology engine
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1399-1415A review of the problems of preparing accurate geometric models of steel ropes based on mathematical models without significant simplifications, taking into account the intended purpose of the model, is carried out. Possible approaches to the generation of precise geometric models of steel ropes that have no fundamental limitations on their integration in computational domains and the subsequent construction of finite element models based on them are shown. A generalized parameterized geometric model of single and double twist ropes and its algorithmic implementation using the OpenCASCADE Core Technology geometric modeling kernel in the Gmsh environment (open source software) is considered. The problems of using generic tabular data from steel rope assortment standards as initial data for constructing geometric models are considered. Methods of preliminary verification of collisions of a geometric model based on the initial data of a geometric model are given. Post-verification methods based on Boolean operations over rope wire bodies are given to identify incorrect results of generating models of wire bodies with curvilinear side surfaces based on the algorithm of sequential hierarchical construction of individual wires of single strand and sequential copying of it. Various methods of the process of constructing geometric models of rope wires by extrusion are shown: through a sequence of generatrix with the formation of a body limited by curvilinear surfaces, through a sequence of generatrix with the formation of a body limited by linearly approximated surfaces, and extrusion of one generatrix along a single guideline. The computational complexity of the geometric model generation and the required volume of RAM for the two most universal methods of creating a body of wire are investigated. A method for estimating the value of the step of the arrangement of the generatrix of a single wire is shown, and the influence of its value on the computational complexity of the procedure of wire construction is investigated. Recommendations are given for choosing the value of the radial gap between the layers of wires. An algorithmic implementation of the method for searching for collisions of a geometric model of a steel rope in a non-interactive mode is shown. Approaches to the formation of procedures for processing collisions are proposed. Approaches presented in the article can be implemented in the form of software modules for execution in the Gmsh environment, as well as for another environment using the OpenCascade Core Technology geometric modeling kernel. Such modules allow automation of the construction of accurate geometric models of steel ropes in any configuration without fundamental restrictions on subsequent use, both stand-alone and in the form of objects (primitives) suitable for integration in a third-party model.
-
Компенсация собственных нелинейных помех на основе смешанного метода Ньютона
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1579-1592В статье исследуется одно из возможных решений задачи компенсации собственных помех (SIC, Self-Interference Cancellation), возникающей при проектировании полнодуплексных (IBFD, In-band Full-Duplex) систем связи. Подавление собственных помех осуществляется в цифровой области с помощью многослойных нелинейных моделей, которые адаптируются на основе метода градиентного спуска. Наличие локальных оптимумов и седловых точек при адаптации многослойных моделей делает невозможным использование методов второго порядка ввиду знаконеопределенности матрицы Гессе.
В данной работе предложено использовать смешанный метод Ньютона (MNM, mixed Newton method), который учитывает информацию о смешанных производных второго порядка функции потерь и, как следствие, обеспечивает высокую скорость сходимости по сравнению с традиционными методами первого порядка. Использование лишь только смешанных частных производных второго порядка при построении матрицы Гессе позволяет избежать проблемы «застревания» в седловых точках при использовании смешанного метода Ньютона для адаптации многослойных нелинейных компенсаторов собственных помех при проектировании полнодуплексных систем связи.
В качестве модели собственных нелинейных помех выбрана модель Гаммерштейна с комплексными параметрами. Данный выбор обусловлен тем, что модель эффективно описывает физические свойства, лежащие в основе формирования собственных помех. Благодаря свойству голоморфности выхода модели смешанный метод Ньютона обеспечивает свойство «отталкивания» от седловых точек в ландшафте функции потерь.
В работе приводятся кривые сходимости при адаптации модели Гаммерштейна смешанным методом Ньютона, а также при помощи классических подходов на основе метода градиентного спуска. Кроме того, приводится вывод предложенного метода, а также оценка вычислительной сложности.
Ключевые слова: метод второго порядка, комплекснозначный гессиан, полнодуплексные системы связи, компенсация собственных помех.
Non-linear self-interference cancellation on base of mixed Newton method
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1579-1592The paper investigates a potential solution to the problem of Self-Interference Cancellation (SIC) encountered in the design of In-Band Full-Duplex (IBFD) communication systems. The suppression of selfinterference is implemented in the digital domain using multilayer nonlinear models adapted via the gradient descent method. The presence of local optima and saddle points in the adaptation of multilayer models prevents the use of second-order methods due to the indefinite nature of the Hessian matrix.
This work proposes the use of the Mixed Newton Method (MNM), which incorporates information about the second-order mixed partial derivatives of the loss function, thereby enabling a faster convergence rate compared to traditional first-order methods. By constructing the Hessian matrix solely with mixed second-order partial derivatives, this approach mitigates the issue of “getting stuck” at saddle points when applying the Mixed Newton Method for adapting multilayer nonlinear self-interference compensators in full-duplex system design.
The Hammerstein model with complex parameters has been selected to represent nonlinear selfinterference. This choice is motivated by the model’s ability to accurately describe the underlying physical properties of self-interference formation. Due to the holomorphic property of the model output, the Mixed Newton Method provides a “repulsion” effect from saddle points in the loss landscape.
The paper presents convergence curves for the adaptation of the Hammerstein model using both the Mixed Newton Method and conventional gradient descent-based approaches. Additionally, it provides a derivation of the proposed method along with an assessment of its computational complexity.
-
Ускоренные адаптивные по константам сильной выпуклости и Липшица для градиента методы первого порядка
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 947-963Работа посвящена построению эффективных и применимых к реальным задачам методов выпуклой оптимизации первого порядка, то есть использующих только значения целевой функции и ее производных. При построении используется быстрый градиентный метод OGM-G, который является оптимальным по оракульной сложности (числу вычислений градиента целевой функции), но при запуске требует знания констант сильной выпуклости и Липшица градиента для вычисления количества шагов и длины шага, требуемых для достижения заданной точности. Данное требование усложняет практическое использование метода. Предлагаются адаптивный по константе сильной выпуклости алгоритм ACGM, основанный на рестартах OGM-G с обновлениемо ценки константы сильной выпуклости, и адаптивный по константе Липшица градиента метод ALGM, в котором применение рестартов OGM-G дополнено подбором константы Липшица с проверкой условий гладкости, используемых в методе универсального градиентного спуска. При этом устраняются недостатки исходного метода, связанные с необходимостью знания данных констант, что делает возможным практическое использование. Доказывается, что оценки сложности построенных алгоритмов являются оптимальными с точностью до числового множителя. Для проверки полученных результатов проводятся эксперименты на модельных функциях и реальных задачах машинного обучения.
Ключевые слова: быстрый градиентный метод, адаптивность по константе сильной выпуклости, адаптивность по константе Липшица градиента.
Fast adaptive by constants of strong-convexity and Lipschitz for gradient first order methods
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 947-963The work is devoted to the construction of efficient and applicable to real tasks first-order methods of convex optimization, that is, using only values of the target function and its derivatives. Construction uses OGMG, fast gradient method which is optimal by complexity, but requires to know the Lipschitz constant for gradient and the strong convexity constant to determine the number of steps and step length. This requirement makes practical usage very hard. An adaptive on the constant for strong convexity algorithm ACGM is proposed, based on restarts of the OGM-G with update of the strong convexity constant estimate, and an adaptive on the Lipschitz constant for gradient ALGM, in which the use of OGM-G restarts is supplemented by the selection of the Lipschitz constant with verification of the smoothness conditions used in the universal gradient descent method. This eliminates the disadvantages of the original method associated with the need to know these constants, which makes practical usage possible. Optimality of estimates for the complexity of the constructed algorithms is proved. To verify the results obtained, experiments on model functions and real tasks from machine learning are carried out.
-
Высокоточная оценка пространственной ориентации видеокамеры системы технического зрения подвижного робототехнического комплекса
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 93-107Эффективность подвижных робототехнических комплексов (ПРТК), осуществляющих мониторинг дорожной обстановки, городской инфраструктуры, последствий чрезвычайных ситуаций и пр., напрямую зависит от качества функционирования систем технического зрения, являющихся важнейшей частью ПРТК. В свою очередь, точность обработки изображений в системах технического зрения в существенной степени зависит от точности пространственной ориентации видеокамеры, размещаемой на ПРТК. Но при размещении видеокамер на ПРТК резко возрастает уровень погрешностей их пространственной ориентации, вызванных ветровыми и сейсмическими колебаниями мачты, движением ПРТК по пересеченной местности и пр. В связи с этим в статье рассмотрено общее решение задачи стохастической оценки параметров пространственной ориентации видеокамер в условиях как случайных колебаний мачты, так и произвольного характера движения ПРТК. Так как методы решения данной задачи на основе спутниковых измерений при высокой интенсивности естественных и искусственных радиопомех (способы формирования которых постоянно совершенствуются) не в состоянии обеспечить требуемую точность решения, то в основу предложенного подхода положено использование автономных средств измерения — инерциальных и неинерциальных. Но при их использовании возникает проблема построенияи стохастической оценки общей модели движения видеокамеры, сложность которой определяется произвольным движением ПРТК, случайными колебаниями мачты, помехами измеренияи др. В связи с нерешенностью данной проблемы на сегодняшний день в статье рассмотрен синтез как модели движения видеокамеры в самом общем случае, так и стохастической оценки ее параметров состояния. При этом разработанный алгоритм совместной оценки параметров пространственной ориентации видеокамеры, размещенной на мачте ПРТК, является инвариантным и к характеру движения мачты, и видеокамеры, и самого ПРТК, обеспечивая при этом устойчивость и требуемую точность оценивания при самых общих предположениях о характере помех чувствительных элементов используемого автономного измерительного комплекса. Результаты численного эксперимента позволяют сделать вывод о возможности практического применения предложенного подхода для решения задачи текущей пространственной ориентации ПРТК и размещенных на них видеокамер, причем с использованием недорогих автономных средств измерения.
Ключевые слова: подвижный робототехнический комплекс, система технического зрения, мачта, видеокамера, пространственная ориентация, нелинейное стохастическое оценивание.
High-precision estimation of the spatial orientation of the video camera of the vision system of the mobile robotic complex
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 93-107The efficiency of mobile robotic systems (MRS) that monitor the traffic situation, urban infrastructure, consequences of emergency situations, etc., directly depends on the quality of vision systems, which are the most important part of MRS. In turn, the accuracy of image processing in vision systems depends to a great extent on the accuracy of spatial orientation of the video camera placed on the MRS. However, when video cameras are placed on the MRS, the level of errors of their spatial orientation increases sharply, caused by wind and seismic vibrations, movement of the MRS over rough terrain, etc. In this connection, the paper considers a general solution to the problem of stochastic estimation of spatial orientation parameters of video cameras in conditions of both random mast vibrations and arbitrary character of MRS movement. Since the methods of solving this problem on the basis of satellite measurements at high intensity of natural and artificial radio interference (the methods of formation of which are constantly being improved) are not able to provide the required accuracy of the solution, the proposed approach is based on the use of autonomous means of measurement — inertial and non-inertial. But when using them, the problem of building and stochastic estimation of the general model of video camera motion arises, the complexity of which is determined by arbitrary motion of the video camera, random mast oscillations, measurement disturbances, etc. The problem of stochastic estimation of the general model of video camera motion arises. Due to the unsolved nature of this problem, the paper considers the synthesis of both the video camera motion model in the most general case and the stochastic estimation of its state parameters. The developed algorithm for joint estimation of the spatial orientation parameters of the video camera placed on the mast of the MRS is invariant to the nature of motion of the mast, the video camera, and the MRS itself, providing stability and the required accuracy of estimation under the most general assumptions about the nature of interference of the sensitive elements of the autonomous measuring complex used. The results of the numerical experiment allow us to conclude that the proposed approach can be practically applied to solve the problem of the current spatial orientation of MRS and video cameras placed on them using inexpensive autonomous measuring devices.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




