Результаты поиска по 'процесс':
Найдено статей: 449
  1. Омарова А.Г., Бейбалаев В.Д.
    Численное решение третьей начально-краевой задачи для нестационарного уравнения теплопроводности с дробными производными
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1345-1360

    В последнее время для описания различных математических моделей физических процессов широко используется дробно-дифференциальное исчисление. В связи с этим большое внимание уделяется уравнениям в частных производных дробного порядка, которые являются обобщением уравнений в частных производных целого порядка.

    Нагруженными дифференциальными уравнениями в литературе называют уравнения, содержащие значения решения или его производных на многообразиях меньшей размерности, чем размерность области определения искомой функции. В настоящее время широко используются численные методы для решения нагруженных уравнений в частных производных целого и дробного порядка, поскольку аналитические методы решения сложны в реализации. Достаточно эффективным методом численного решения такого рода задач является метод конечных разностей, или метод сеток.

    Исследована начально-краевая задача в прямоугольнике $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ для нагруженного дифференциального уравнения теплопроводности с композицией дробной производной Римана – Лиувилля и Капуто – Герасимова и с граничными условиями первого и третьего рода. С помощью метода энергетических неравенств получена априорная оценка в дифференциальной и в разностной форме. Полученные неравенства означают единственность решения и непрерывную зависимость решения от входных данных задачи. Получен разностный аналог для композиции дробной производной Римана – Лиувилля и Капуто – Герасимова порядка $(2-\beta )$ и построена разностная схема, аппроксимирующая исходную задачу с порядком $O\left(\tau +h^{2-\beta } \right)$. Доказана сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью, равной порядку аппроксимации разностной схемы.

    Omarova A.G., Beybalayev V.D.
    Numerical solution of the third initial-boundary value problem for the nonstationary heat conduction equation with fractional derivatives
    Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1345-1360

    Recently, to describe various mathematical models of physical processes, fractional differential calculus has been widely used. In this regard, much attention is paid to partial differential equations of fractional order, which are a generalization of partial differential equations of integer order. In this case, various settings are possible.

    Loaded differential equations in the literature are called equations containing values of a solution or its derivatives on manifolds of lower dimension than the dimension of the definitional domain of the desired function. Currently, numerical methods for solving loaded partial differential equations of integer and fractional orders are widely used, since analytical solving methods for solving are impossible. A fairly effective method for solving this kind of problem is the finite difference method, or the grid method.

    We studied the initial-boundary value problem in the rectangle $\overline{D}=\{(x,\,t)\colon 0\leqslant x\leqslant l,\;0\leqslant t\leqslant T\}$ for the loaded differential heat equation with composition fractional derivative of Riemann – Liouville and Caputo – Gerasimov and with boundary conditions of the first and third kind. We have gotten an a priori assessment in differential and difference interpretations. The obtained inequalities mean the uniqueness of the solution and the continuous dependence of the solution on the input data of the problem. A difference analogue of the composition fractional derivative of Riemann – Liouville and Caputo –Gerasimov order $(2-\beta )$ is obtained and a difference scheme is constructed that approximates the original problem with the order $O\left(\tau +h^{2-\beta } \right)$. The convergence of the approximate solution to the exact one is proven at a rate equal to the order of approximation of the difference scheme.

  2. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Korchak A.B.
    Accuracy control for fast circuit simulation
    Computer Research and Modeling, 2011, v. 3, no. 4, pp. 365-370

    We developed an algorithm for fast simulation of VLSI CMOS (Very Large Scale Integration with Complementary Metal-Oxide-Semiconductors) with an accuracy control. The algorithm provides an ability of parallel numerical experiments in multiprocessor computational environment. There is computation speed up by means of block-matrix and structural (DCCC) decompositions application. A feature of the approach is both in a choice of moments and ways of parameters synchronization and application of multi-rate integration methods. Due to this fact we have ability to estimate and control error of given characteristics.

    Citations: 1 (RSCI).
  3. Жихаревич В.В., Шумиляк Л.М., Струтинская Л.Т., Остапов С.Э.
    Построение и исследование непрерывной клеточно-автоматной модели процессов теплопроводности с фазовыми переходами первого рода
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 141-152

    В данной статье рассматриваются процессы теплопроводности, сопровождающиеся фазовыми переходами первого рода. При помощи клеточно-автоматного моделирования был исследован класс задач, имеющих широкое применение в практической деятельности. В работе приведены вычисления распределения температуры по глубине почвы в разные моменты времени для задачи промерзания влажного грунта. Другая задача — зонное выращивание — также смоделирована с помощью клеточных автоматов. Совпадение реальных и модельных параметров системы подтверждает целесообразность использования выбранного способа моделирования физических процессов.

    Zhуkharevуch V.V., Shumуlyak L.M., Strutinskaja L.T., Ostapov S.E.
    Construction and investigation of continuous cellular automatа model of heat conductivity processes with first order phase transitions
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 141-152

    The process of heat conduction, accompanied by the first order phase transitions is discussed in this article. Using cellular automates simulation was investigated class of problems that have broad application in practice. In this paper we calculate the temperature distribution in the depth of the soil at different times for a problem of freezing of moist soil. Another task — zone growing — has been modeled by cellular automates too. The coincidence of real and modeling parameters of the system confirms the feasibility of using the selected method of modeling of physical processes.

    Views (last year): 2. Citations: 2 (RSCI).
  4. Представлены результаты расчетов стационарной скорости распространения пламени с использованием соотношения, полученного на основе термодинамического вариационного принципа. Показано, что предложенный вычислительный алгоритм обеспечивает устойчивую сходимость итерационного процесса при любом начальном приближении значительно отличающемся от искомого решения.

    Karpov A.I.
    Parametric study of the thermodynamic algorithm for the prediction of steady flame spread rate
    Computer Research and Modeling, 2013, v. 5, no. 5, pp. 799-804

    The stationary flame spread rate has been calculated using the relationship based on the thermodynamic variational principle. It has been shown that proposed numerical algorithm provides the stable convergence under any initial approximation, which could be noticeably far from the searched solution.

    Views (last year): 1. Citations: 1 (RSCI).
  5. Голомазов М.М.
    Моделирование движения астероида в атмосфере Земли
    Компьютерные исследования и моделирование, 2013, т. 5, № 6, с. 917-926

    В статье исследуется явление падения астероида в районе Челябинска. На основе немногочисленных зафиксированных видеокадров и измерений выполнено моделирование траектории и основных параметров астероида. Проведены расчеты обтекания астероида до и после его разрушения. Обсуждаются возможные варианты совместного падения нескольких астероидов. Представлены значения траекторных параметров и газодинамических и термодинамических функций потока для проведения расчетов процесса разрушения астероида.

    Golomazov M.M.
    Simulation of asteroid braking in the Earth atmosphere
    Computer Research and Modeling, 2013, v. 5, no. 6, pp. 917-926

    This article is investigated phenomenon of asteroid braking in neighborhood Chelyabinsk. Simulation of trajectory and asteroid basic parameters is accomplished on the basis of not numerous fixed video film and measurements. Calculation of hypersonic flow around asteroid is carried out before and after asteroid collapse. Possible version of asteroids synchronous braking is discussed. Trajectory data and gas dynamic functions are presented as data for definition of asteroid collapse.

    Views (last year): 4. Citations: 2 (RSCI).
  6. Шапошников А.А., Шапошникова Е.В., Шапошников А.И.
    К вопросу о качестве работы алгоритмов слежения за объектами
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 495-502

    Разобран алгоритм трекинга, позволяющий в процессе слежения учитывать независимые изменения вертикального и горизонтального размеров и ориентации объекта слежения. Показано, что в процессе слежения определяющим является учет всех характеристик области слежения, второстепенным — предсказание положения объекта.

    Shaposhnikov A.A., Shaposhnikova E.V., Shaposhnikov A.I.
    About quality of Kernel based object tracking
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 495-502

    The kernel based object tracking algorithms were described that take in account the independent changes of the 4 and 5 out of 5 parameters of the elliptic tracking region. It is shown that in tracking this conditions are sufficient and attempts of prediction are not necessary.

    Views (last year): 4. Citations: 2 (RSCI).
  7. Паровик Р.И.
    Математическое моделирование эредитарного осциллятора
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1001-1021

    В работе рассматривается эредитарный осциллятор, который характеризуется осцилляционным уравнением с производными дробных порядков $\beta$ и $\gamma$ в смысле Герасимова–Капуто. С помощью преобразования Лапласа были получены аналитические решения и функция Грина, которые определяются через специальные функции типа Миттаг-Леффлера и обобщенной функции Райта. Доказано, что при фиксированных значениях $\beta = 2$ и $\gamma = 1$ найденное решение переходит в классическое решение для гармонического осциллятора. Согласно полученным решениям были построены расчетные кривые и фазовые траектории эредитарного колебательного процесса. Установлено, что в случае внешнего периодического воздействия на эредитарный осциллятор могут возникать эффекты, присущие классическим нелинейным осцилляторам.

    Parovik R.I.
    Mathematical modeling of oscillator hereditarity
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1001-1021

    The paper considers hereditarity oscillator which is characterized by oscillation equation with derivatives of fractional order $\beta$ and $\gamma$, which are defined in terms of Gerasimova-Caputo. Using Laplace transform were obtained analytical solutions and the Green’s function, which are determined through special functions of Mittag-Leffler and Wright generalized function. It is proved that for fixed values of $\beta = 2$ and $\gamma = 1$, the solution found becomes the classical solution for a harmonic oscillator. According to the obtained solutions were built calculated curves and the phase trajectories hereditarity oscillatory process. It was found that in the case of an external periodic influence on hereditarity oscillator may occur effects inherent in classical nonlinear oscillators.

    Views (last year): 4. Citations: 12 (RSCI).
  8. Куликов Ю.М., Сон Э.Е.
    Применение схемы«КАБАРЕ» к задаче об эволюции свободного сдвигового течения
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 881-903

    В настоящей работе приводятся результаты численного моделирования свободного сдвигового течения с помощью схемы «КАБАРЕ», реализованной в приближении слабой сжимаемости. Анализ схемы проводится на основе изучения свойств неустойчивости Кельвина–Гельмгольца и порождаемой ею двумерной турбулентности, с использованием интегральных кривых кинетической энергии и энстрофии, картин временной эволюции завихренности, спектров энстрофии и энергии, а также дисперсионного соотношения для инкремента неустойчивости. Расчеты проводились для числа Рейнольдса $\text{Re} = 4 \times 10^5$, на квадратных последовательно сгущаемых сетках в диапазоне $128^2-2048^2$ ячеек. Внимание уделено проблеме «недоразрешенности слоев», проявляющейся в возникновении лишнего вихря при свертывании двух вихревых листов (слоев вихревой пелены). Данное явление существует только на грубых сетках $(128^2)$, однако, полностью симметричная картина эволюции завихренности начинает наблюдаться только при переходе к сетке $1024^2$ ячеек. Размерные оценки отношения вихрей на границах инерционного интервала показывают, что наиболее подробная сетка $2048^2$ ячеек оказывается достаточной для качественного отображения мелкомасштабных сгустков завихренности. Тем не менее можно говорить о достижении хорошей сходимости при отображении крупномасштабных структур. Эволюция турбулентности, в полном соответствии с теоретическими представлениями, приводит к появлению крупных вихрей, в которых сосредотачивается вся кинетическая энергия движения, и уединенных мелкомасштабных образований. Последние обладают свойствами когерентных структур, выживая в процессе нитеобразования (филаментации), и практически не взаимодействуют с вихрями других масштабов. Обсуждение диссипативных характеристик схемы ведется на основе анализа графиков скорости диссипации кинетической энергии, вычисляемой непосредственно, а также на основе теоретических соотношений для моделей несжимаемой жидкости (по кривым энстрофии) и сжимаемого газа (по влиянию тензора скоростей деформации и эффектов дилатации). Асимптотическое поведение каскадов кинетической энергии и энстрофии подчиняется реализующимся в двумерной турбулентности соотношениям $E(k) \propto k^{−3}$, $\omega^2(k) \propto k^{−1}$. Исследование зависимости инкремента неустойчивости от безразмерного волнового числа показывает хорошее согласие с данными других исследователей, вместе с тем часто используемый способ расчета инкремента неустойчивости не всегда оказывается достаточно точным, вследствие чего была предложена его модификация.

    Таким образом, реализованная схема, отличаясь малой диссипативностью и хорошим вихреразрешением, оказывается вполне конкурентоспособной в сравнении с методами высокого порядка точности.

    Kulikov Y.M., Son E.E.
    CABARET scheme implementation for free shear layer modeling
    Computer Research and Modeling, 2017, v. 9, no. 6, pp. 881-903

    In present paper we reexamine the properties of CABARET numerical scheme formulated for a weakly compressible fluid flow basing the results of free shear layer modeling. Kelvin–Helmholtz instability and successive generation of two-dimensional turbulence provide a wide field for a scheme analysis including temporal evolution of the integral energy and enstrophy curves, the vorticity patterns and energy spectra, as well as the dispersion relation for the instability increment. The most part of calculations is performed for Reynolds number $\text{Re} = 4 \times 10^5$ for square grids sequentially refined in the range of $128^2-2048^2$ nodes. An attention is paid to the problem of underresolved layers generating a spurious vortex during the vorticity layers roll-up. This phenomenon takes place only on a coarse grid with $128^2$ nodes, while the fully regularized evolution pattern of vorticity appears only when approaching $1024^2$-node grid. We also discuss the vorticity resolution properties of grids used with respect to dimensional estimates for the eddies at the borders of the inertial interval, showing that the available range of grids appears to be sufficient for a good resolution of small–scale vorticity patches. Nevertheless, we claim for the convergence achieved for the domains occupied by large-scale structures.

    The generated turbulence evolution is consistent with theoretical concepts imposing the emergence of large vortices, which collect all the kinetic energy of motion, and solitary small-scale eddies. The latter resemble the coherent structures surviving in the filamentation process and almost noninteracting with other scales. The dissipative characteristics of numerical method employed are discussed in terms of kinetic energy dissipation rate calculated directly and basing theoretical laws for incompressible (via enstrophy curves) and compressible (with respect to the strain rate tensor and dilatation) fluid models. The asymptotic behavior of the kinetic energy and enstrophy cascades comply with two-dimensional turbulence laws $E(k) \propto k^{−3}, \omega^2(k) \propto k^{−1}$. Considering the instability increment as a function of dimensionless wave number shows a good agreement with other papers, however, commonly used method of instability growth rate calculation is not always accurate, so some modification is proposed. Thus, the implemented CABARET scheme possessing remarkably small numerical dissipation and good vorticity resolution is quite competitive approach compared to other high-order accuracy methods

    Views (last year): 17.
  9. Мухартова Ю.В., Мангура П.А., Левашова Н.Т., Ольчев А.В.
    Выбор граничных условий при моделировании процессов турбулентного переноса в приземном слое атмосферы
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 27-46

    Рассмотрены одномерная и двумерная гидродинамические модели турбулентного переноса внутри приземного слоя атмосферы в условиях нейтральной атмосферной стратификации. Обе модели основаны на решении системы усредненных уравнений Навье – Стокса и неразрывности с использованием 1.5-го порядка замыкания, а также уравнений для турбулентной кинетической энергии и скорости ее диссипации. С помощью одномерной модели, применимой в случае однородной подстилающей поверхности, проведено исследование по оценке влияния граничных условий на верхней и нижней границах модельной области на результаты расчетов вертикальных профилей скорости ветра и параметров турбулентности. В предложенной модели граничные условия ставились таким образом, чтобы она была согласована с широко используемой классической одномерной моделью, основанной на логарифмическом распределении скорости ветра по высоте, линейной зависимости коэффициента турбулентного обмена от высоты и постоянстве турбулентной кинетической энергии в приземном слое атмосферы в условиях нейтральной атмосферной стратификации. На основе классической модели можно получить ряд соотношений, связывающих градиент скорости ветра, турбулентную кинетическую энергию и скорость ее диссипации, каждое из которых может быть использовано в качестве граничного условия в гидродинамической модели. Из нескольких возможных вариантов постановки граничных условий для скорости ветра и скорости диссипации турбулентной кинетической энергии выбраны те, при которых достигается наименьшее отклонение смоделированных с помощью гидродинамической модели вертикальных профилей искомых величин от классических распределений. Соответствующие граничные условия на верхней и нижней границах использованы при постановке начально-краевой задачи в двумерной гидродинамической модели, позволяющей учитывать сложную структуру рельефа и горизонтальную неоднородность растительности. На основе предложенной двумерной модели с выбранными оптимальными граничными условиями исследована динамика установления турбулентного потока в зависимости от расстояния при обтекании воздушным потоком опушки леса. Для всех рассмотренных начально-краевых задач разработаны и реализованы безусловно устойчивые неявные разностные схемы их численного решения.

    Muhartova Ju.V., Mangura P.A., Levashova N.T., Olchev A.V.
    Selection of boundary conditions for modeling the turbulent exchange processes within the atmospheric surface layer
    Computer Research and Modeling, 2018, v. 10, no. 1, pp. 27-46

    One- and two-dimensional hydrodynamic models of turbulent transfer within the atmospheric surface layer under neutral thermal stratification are considered. Both models are based on the solution of system of the timeaveraged equations of Navier – Stokes and continuity using a 1.5-order closure scheme as well as equations for turbulent kinetic energy and the rate of its dissipation. The influence of the upper and lower boundary conditions on vertical profiles of wind speed and turbulence parameters within the atmospheric surface layer was derived using an one-dimensional model usually applied in case of an uniform ground surface. The boundary conditions in the model were prescribed in such way that the vertical wind and turbulence patterns were well agreed with widely used logarithmic vertical profile of wind speed, linear dependence of turbulent exchange coefficient on height above ground surface level and constancy of turbulent kinetic energy within the atmospheric surface layer under neutral atmospheric conditions. On the basis of the classical one-dimensional model it is possible to obtain a number of relationships which link the vertical wind speed gradient, turbulent kinetic energy and the rate of its dissipation. Each of these relationships can be used as a boundary condition in our hydrodynamic model. The boundary conditions for the wind speed and the rate of dissipation of turbulent kinetic energy were selected as parameters to provide the smallest deviations of model calculations from classical distributions of wind and turbulence parameters. The corresponding upper and lower boundary conditions were used to define the initial and boundary value problem in the two-dimensional hydrodynamic model allowing to consider complex topography and horizontal vegetation heterogeneity. The two-dimensional model with selected optimal boundary conditions was used to describe the spatial pattern of turbulent air flow when it interacted with the forest edge. The dynamics of the air flow establishment depending on the distance from the forest edge was analyzed. For all considered initial and boundary value problems the unconditionally stable implicit finite-difference schemes of their numerical solution were developed and implemented.

    Views (last year): 19.
  10. Андрущенко В.А., Максимов Ф.А., Сызранова Н.Г.
    Моделирование полета и разрушения болида Бенешов
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618

    Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.

    Andruschenko V.A., Maksimov F.A., Syzranova N.G.
    Simulation of flight and destruction of the Benešov bolid
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618

    Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.

    Views (last year): 24. Citations: 1 (RSCI).
Pages: « first previous next last »

Indexed in Scopus

Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU

The journal is included in the Russian Science Citation Index

The journal is included in the RSCI

International Interdisciplinary Conference "Mathematics. Computing. Education"