All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Статистическое распределение фазы квазигармонического сигнала: основы теории и компьютерное моделирование
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 287-297В работе представлены результаты фундаментального исследования, направленного на теоретическое изучение и компьютерное моделирование свойств статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Методами математического анализа получены в явном виде формулы для основных характеристик данного распределения — функции распределения, функции плотности вероятности, функции правдоподобия. В результате проведенного компьютерного моделирования проанализированы зависимости данных функций от параметров распределения фазы. В работе разработаны и обоснованы методы оценивания параметров распределения фазы, несущих информацию об исходном, не искаженном шумом сигнале. Показано, что задача оценивания исходного значения фазы квазигармонического сигнала может эффективно решаться простым усреднением результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать метод максимума правдоподобия. В работе представлены графические материалы, полученные путем компьютерного моделирования основных характеристик исследуемого статистического распределения фазы. Существование и единственность максимума функции правдоподобия позволяют обосновать возможность и эффективность решения задачи оценивания уровня сигнала относительно уровня шума методом максимума правдоподобия. Развиваемый в работе метод оценивания уровня незашумленного сигнала относительно уровня шума, т.е. параметра, характеризующего интенсивность сигнала, на основании измерений фазы сигнала является оригинальным, принципиально новым, открывающим перспективы использования фазовых измерений как инструмента анализа стохастических данных. Данное исследование является значимым для решения задач расчета фазы и уровня сигнала методами статистической обработки выборочных фазовых измерений. Предлагаемые методы оценивания параметров распределения фазы квазигармонического сигнала могут использоваться при решении различных научных и прикладных задач, в частности, в таких областях, как радиофизика, оптика, радиолокация, радионавигация, метрология.
Ключевые слова: квазигармонический сигнал, гауссовский шум, отношение сигнала к шуму, функция распределения, функция плотности вероятности, функция правдоподобия, интеграл ошибок.
Statistical distribution of the quasi-harmonic signal’s phase: basics of theory and computer simulation
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 287-297The paper presents the results of the fundamental research directed on the theoretical study and computer simulation of peculiarities of the quasi-harmonic signal’s phase statistical distribution. The quasi-harmonic signal is known to be formed as a result of the Gaussian noise impact on the initially harmonic signal. By means of the mathematical analysis the formulas have been obtained in explicit form for the principle characteristics of this distribution, namely: for the cumulative distribution function, the probability density function, the likelihood function. As a result of the conducted computer simulation the dependencies of these functions on the phase distribution parameters have been analyzed. The paper elaborates the methods of estimating the phase distribution parameters which contain the information about the initial, undistorted signal. It has been substantiated that the task of estimating the initial value of the phase of quasi-harmonic signal can be efficiently solved by averaging the results of the sampled measurements. As for solving the task of estimating the second parameter of the phase distribution, namely — the parameter, determining the signal level respectively the noise level — a maximum likelihood technique is proposed to be applied. The graphical illustrations are presented that have been obtained by means of the computer simulation of the principle characteristics of the phase distribution under the study. The existence and uniqueness of the likelihood function’s maximum allow substantiating the possibility and the efficiency of solving the task of estimating signal’s level relative to noise level by means of the maximum likelihood technique. The elaborated method of estimating the un-noised signal’s level relative to noise, i. e. the parameter characterizing the signal’s intensity on the basis of measurements of the signal’s phase is an original and principally new technique which opens perspectives of usage of the phase measurements as a tool of the stochastic data analysis. The presented investigation is meaningful for solving the task of determining the phase and the signal’s level by means of the statistical processing of the sampled phase measurements. The proposed methods of the estimation of the phase distribution’s parameters can be used at solving various scientific and technological tasks, in particular, in such areas as radio-physics, optics, radiolocation, radio-navigation, metrology.
-
Иерархический метод математического моделирования стохастических тепловых процессов в сложных электронных системах
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 613-630В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.
Ключевые слова: стохастический, тепловой процесс, статистические меры, математическое моделирование, электронные системы.
Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630Views (last year): 3.A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.
-
Признаки стохастической детерминированности автогенной сукцессии лесных экосистем в марковских моделях
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 255-265В статье описывается метод моделирования хода сукцессии лесных экосистем до климаксовой стадии с помощью построения марковской цепи. Показаны возможности метода устанавливать закономерности ходов сукцессии в собственных временах формирования лесных экосистем. В отличие от традиционных методов моделирования сукцессии на основе смен типов растительности, за переходные стадии разрабатываемой модели приняты варианты сформированности вертикальной структуры лесных сообществ и их насыщенности позднесукцессионными видами. Длительность сукцессионных ходов из любого состояния устанавливается не в абсолютных временны́х единицах, а рассчитывается по средним числам шагов до попадания в климакс в единой временнóй шкале. Выявлено свойство восстанавливающейся растительности, определенное как признак стохастической детерминированности хода автогенной сукцессии. Приведены свидетельства того, что ход и темп лесной сукцессии стохастически детерминированы внутренними особенностями пространственной и популяционной организации сообществ.
Ключевые слова: моделирование хода сукцессии, марковская цепь, темп сукцессии, вертикальная структура сообществ, стохастический детерминизм, собственные времена формирования сообществ.
Marks of stochastic determinacy of forest ecosystem autogenous succession in Markov models
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 255-265Views (last year): 2. Citations: 2 (RSCI).This article describes a method to model the course of forest ecosystem succession to the climax state by means of a Markov chain. In contrast to traditional methods of forest succession modelling based on changes of vegetation types, several variants of the vertical structure of communities formed by late-successional tree species are taken as the transition states of the model. Durations of succession courses from any stage are not set in absolute time units, but calculated as the average number of steps before reaching the climax in a unified time scale. The regularities of succession courses are revealed in the proper time of forest ecosystems shaping. The evidences are obtained that internal features of the spatial and population structure do stochastically determine the course and the pace of forest succession. The property of developing vegetation of forest communities is defined as an attribute of stochastic determinism in the course of autogenous succession.
-
Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.
Ключевые слова: популяционная динамика, случайные возмущения, функция стохастической чувствительности, доверительные области.
Analysis of noise-induced destruction of coexistence regimes in «prey–predator» population model
Computer Research and Modeling, 2016, v. 8, no. 4, pp. 647-660Views (last year): 14. Citations: 4 (RSCI).The paper is devoted to the analysis of the proximity of the population system to dangerous boundaries. An intersection of these boundaries results in the collapse of the stable coexistence of interacting populations. As a reason of such destruction one can consider random perturbations inevitably presented in any living system. This study is carried out on the example of the well-known model of interaction between predator and prey populations, taking into account both a stabilizing factor of the competition of predators for another than prey resources, and also a destabilizing saturation factor for predators. To describe the saturation of predators, we use the second type Holling trophic function. The dynamics of the system is studied as a function of the predator saturation, and the coefficient of predator competition for resources other than prey. The paper presents a parametric description of the possible dynamic regimes of the deterministic model. Here, local and global bifurcations are studied, and areas of sustainable coexistence of populations in equilibrium and the oscillation modes are described. An interesting feature of this mathematical model, firstly considered by Bazykin, is a global bifurcation of the birth of limit cycle from the separatrix loop. We study the effects of noise on the equilibrium and oscillatory regimes of coexistence of predator and prey populations. It is shown that an increase of the intensity of random disturbances can lead to significant deformations of these regimes right up to their destruction. The aim of this work is to develop a constructive probabilistic criterion for the proximity of the population stochastic system to the dangerous boundaries. The proposed approach is based on the mathematical technique of stochastic sensitivity functions, and the method of confidence domains. In the case of a stable equilibrium, this confidence domain is an ellipse. For the stable cycle, this domain is a confidence band. The size of the confidence domain is proportional to the intensity of the noise and stochastic sensitivity of the initial deterministic attractor. A geometric criterion of the exit of the population system from sustainable coexistence mode is the intersection of the confidence domain and the corresponding separatrix of the unforced deterministic model. An effectiveness of this analytical approach is confirmed by the good agreement of theoretical estimates and results of direct numerical simulations.
-
Обнаружение медленно движущихся или неожиданно возникающих неподвижных «бутылочных горлышек» в транспортномпо токе на основе теории трех фаз
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 319-363Разработан метод обнаружения неожиданно возникающих «бутылочных горлышек», которые появляются в транспортном потоке внезапно и неожиданно для водителей. Такие неожиданно возникающие бутылочные горлышки могут двигаться, если они вызваны медленно движущейся автомашиной (тип МВ), или же оставаться неподвижными, если они вызваны внезапно остановившейся автомашиной (тип SV), например, в результате аварии. На основе численного моделирования стохастической микроскопической модели транспортного потока в рамках теории трех фаз Кернера показано, что даже при использовании небольшого процента «зондирующих» (измеряющих) автомашин (FCD), случайным образом распределенных в транспортном потоке, возможно надежное обнаружение неожиданно возникающих бутылочных горлышек. Найдено, что временная зависимость вероятности прогноза бутылочных горлышек типа МВ или SV, а также точность определения их положения существенно зависят от последовательности фазовых переходов от свободного (F) к синхронизованному (S) транспортному потоку (F→S-переход) и обратных фазовых переходов (S→F-переход), а также от колебаний скорости автомашин в синхронизованном потоке вблизи бутылочного горлышка. Предлагаемая численная методика позволяет как обнаруживать неожиданно возникшее бутылочное горлышко на автомагистрали, так и различать, связано ли такое бутылочное горлышко с медленно движущейся автомашиной (МВ) или же с внезапно остановившейся автомашиной (SV).
Ключевые слова: моделирование транспортных потоков, переход к плотному потоку, движущееся бутылочное горлышко, теория трех фаз Кернера, зондирующие автомашины (FCD) и навигационные данные.
Prediction of moving and unexpected motionless bottlenecks based on three-phase traffic theory
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 319-363We present a simulation methodology for the prediction of ЃgunexpectedЃh bottlenecks, i.e., the bottlenecks that occur suddenly and unexpectedly for drivers on a highway. Such unexpected bottlenecks can be either a moving bottleneck (MB) caused by a slow moving vehicle or a motionless bottleneck caused by a stopped vehicle (SV). Based on simulations of a stochastic microscopic traffic flow model in the framework of KernerЃfs three-phase traffic theory, we show that through the use of a small share of probe vehicles (FCD) randomly distributed in traffic flow the reliable prediction of ЃgunexpectedЃh bottlenecks is possible. We have found that the time dependence of the probability of MB and SV prediction as well as the accuracy of the estimation of MB and SV location depend considerably on sequences of phase transitions from free flow (F) to synchronized flow (S) (F→S transition) and back from synchronized flow to free flow (S→F transition) as well as on speed oscillations in synchronized flow at the bottleneck. In the simulation approach, the identification of F→S and S→F transitions at an unexpected bottleneck has been made in accordance with Kerner's three-phase traffic theory. The presented simulation methodology allows us both the prediction of the unexpected bottleneck that suddenly occurs on a highway and the distinguishing of the origin of the unexpected bottleneck, i.e., whether the unexpected bottleneck has occurred due to a MB or a SV.
-
Математическое моделирование интервально стохастических тепловых процессов в технических системах при интервальной неопределенности определяющих параметров
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 501-520Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.
Ключевые слова: математическое моделирование, тепловой процесс, техническая система, интервальный, стохастический, нелинейный, нестационарный, статистические меры, математическое ожидание, дисперсия, ковариация.
Mathematical modeling of the interval stochastic thermal processes in technical systems at the interval indeterminacy of the determinative parameters
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 501-520Views (last year): 15. Citations: 6 (RSCI).The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.
-
Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.
Ключевые слова: модель Бэкмана, равновесие Нэша – Вардропа, универсальный метод подобных треугольников, выпуклая оптимизация.
Searching stochastic equilibria in transport networks by universal primal-dual gradient method
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345Views (last year): 28.We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.
-
Модель динамической ловушки для описания человеческого контроля в рамках «стимул – реакция»
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 79-87В статье предлагается новая модель динамической ловушки типа «стимул – реакция», которая имитирует человеческий контроль динамических систем, где ограниченная рациональность человеческого сознания играет существенную роль. Детально рассматривается сценарий, в котором субъект модулирует контролируемую переменную в ответ на определенный стимул. В этом контексте ограниченная рациональность человеческого сознания проявляется в неопределенности восприятия стимула и последующих действий субъекта. Модель предполагает, что когда интенсивность стимула падает ниже (размытого) порога восприятия стимула, субъект приостанавливает управление и поддерживает контролируемую переменную вблизи нуля с точностью, определяемую неопределенностью ее управления. Когда интенсивность стимула превышает неопределенность восприятия и становится доступной человеческому сознания, испытуемый активирует контроль. Тем самым, динамику системы можно представить как чередующуюся последовательность пассивного и активного режимов управления с вероятностными переходами между ними. Более того, ожидается, что эти переходы проявляют гистерезис из-за инерции принятия решений.
В общем случае пассивный и активный режимы базируются на различных механизмах, что является проблемой для создания эффективных алгоритмов их численного моделирования. Предлагаемая модель преодолевает эту проблему за счет введения динамической ловушки типа «стимул – реакция», имеющей сложную структуру. Область динамической ловушки включает две подобласти: область стагнации динамики системы и область гистерезиса. Модель основывается на формализме стохастических дифференциальных уравнений и описывает как вероятностные переходы между пассивным и активным режимами управления, так и внутреннюю динамику этих режимов в рамках единого представления. Предложенная модель воспроизводит ожидаемые свойства этих режимов управления, вероятностные переходы между ними и гистерезис вблизи порога восприятия. Кроме того, в предельном случае модель оказывается способной имитировать человеческий контроль, когда (1) активный режим представляет собой реализацию «разомкнутого» типа для локально запланированных действий и (2) активация контроля возникает только тогда, когда интенсивность стимула существенно возрастает и риск потери контроля системы становится существенным.
Ключевые слова: человеческий контроль, прерывистость, неопределенность, гистерезис, случайные процессы, стохастические дифференциальные уравнения.
Dynamical trap model for stimulus – response dynamics of human control
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 79-87We present a novel model for the dynamical trap of the stimulus – response type that mimics human control over dynamic systems when the bounded capacity of human cognition is a crucial factor. Our focus lies on scenarios where the subject modulates a control variable in response to a certain stimulus. In this context, the bounded capacity of human cognition manifests in the uncertainty of stimulus perception and the subsequent actions of the subject. The model suggests that when the stimulus intensity falls below the (blurred) threshold of stimulus perception, the subject suspends the control and maintains the control variable near zero with accuracy determined by the control uncertainty. As the stimulus intensity grows above the perception uncertainty and becomes accessible to human cognition, the subject activates control. Consequently, the system dynamics can be conceptualized as an alternating sequence of passive and active modes of control with probabilistic transitions between them. Moreover, these transitions are expected to display hysteresis due to decision-making inertia.
Generally, the passive and active modes of human control are governed by different mechanisms, posing challenges in developing efficient algorithms for their description and numerical simulation. The proposed model overcomes this problem by introducing the dynamical trap of the stimulus-response type, which has a complex structure. The dynamical trap region includes two subregions: the stagnation region and the hysteresis region. The model is based on the formalism of stochastic differential equations, capturing both probabilistic transitions between control suspension and activation as well as the internal dynamics of these modes within a unified framework. It reproduces the expected properties in control suspension and activation, probabilistic transitions between them, and hysteresis near the perception threshold. Additionally, in a limiting case, the model demonstrates the capability of mimicking a similar subject’s behavior when (1) the active mode represents an open-loop implementation of locally planned actions and (2) the control activation occurs only when the stimulus intensity grows substantially and the risk of the subject losing the control over the system dynamics becomes essential.
-
Моделирование пространственно-временной динамики циркадианных ритмов Neurospora crassa
Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 191-213В работе предложена новая модель циркадианных колебаний нейроспоры, которая описывает пространственно-временную динамику белков, ответственных за механизм биоритмов. Модель основывается на нелинейном взаимодействии белков FRQ и WCC, кодируемых генами frequency и white collar, и включает в себя как положительную, так и отрицательную петлю обратной связи. Главным элементом механизма колебаний является эффект запаздывания в биохимических реакциях транскрипции генов. Показано, что модель воспроизводит такие свойства циркадианных колебаний нейроспоры как захват частоты под действием внешнего периодического освещения, сброс фазы биоритмов при воздействии импульса света, устойчивость механизма колебаний по отношению к случайным флуктуациям и т. д. Исследованы волновые структуры, возникающие в ходе пространственной эволюции системы. Показано, что волны синхронизации биоритмов среды возникают под воздействием базального транскрипционного фактора.
Modelling spatio-temporal dynamics of circadian rythms in Neurospora crassa
Computer Research and Modeling, 2011, v. 3, no. 2, pp. 191-213Views (last year): 6. Citations: 20 (RSCI).We derive a new model of circadian oscillations in Neurospora crassa, which is suitable to analyze both temporal and spatial dynamics of proteins responsible for mechanism of rythms. The model is based on the non-linear interplay between proteins FRQ and WCC which are products of transcription of frequency and white collar genes forming a feedback loop comprised both positive and negative elements. The main component of oscillations mechanism is supposed to be time-delay in biochemical reactions of transcription. We show that the model accounts for various features observed in Neurospora’s experiments such as entrainment by light cycles, phase shift under light pulse, robustness to action of fluctuations and so on. Wave patterns excited during spatial development of the system are studied. It is shown that the wave of synchronization of biorythms arises under basal transcription factors.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




