All issues
- 2025 Vol. 17
- 2024 Vol. 16
- 2023 Vol. 15
- 2022 Vol. 14
- 2021 Vol. 13
- 2020 Vol. 12
- 2019 Vol. 11
- 2018 Vol. 10
- 2017 Vol. 9
- 2016 Vol. 8
- 2015 Vol. 7
- 2014 Vol. 6
- 2013 Vol. 5
- 2012 Vol. 4
- 2011 Vol. 3
- 2010 Vol. 2
- 2009 Vol. 1
-
Об адаптивных ускоренных методах и их модификациях для альтернированной минимизации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 497-515В первой части работы получена оценка скорости сходимости ранее известного ускоренного метода первого порядка AGMsDR на классе задач минимизации, вообще говоря, невыпуклых функций с $M$-липшицевым градиентом и удовлетворяющих условию Поляка – Лоясиевича. При реализации метода не требуется знать параметр $\mu^{PL}>0$ из условия Поляка – Лоясиевича, при этом метод демонстрирует линейную скорость сходимости (сходимость со скоростью геометрической прогрессии со знаменателем $\left.\left(1 - \frac{\mu^{PL}}{M}\right)\right)$. Ранее для метода была доказана сходимость со скоростью $O\left(\frac1{k^2}\right)$ на классе выпуклых задач с $M$-липшицевым градиентом. А также сходимость со скоростью геометрической прогрессии, знаменатель которой $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$, но только если алгоритму известно значение параметра сильной выпуклости $\mu^{SC}>0$. Новизна результата заключается в том, что удается отказаться от использования методом значения параметра $\mu^{SC}>0$ и при этом сохранить линейную скорость сходимости, но уже без корня в знаменателе прогрессии.
Во второй части представлена новая модификация метода AGMsDR для решения задач, допускающих альтернированную минимизацию (Alternating AGMsDR). Доказываются аналогичные оценки скорости сходимости на тех же классах оптимизационных задач.
Таким образом, представлены адаптивные ускоренные методы с оценкой сходимости $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ на классе выпуклых функций с $M$-липшицевым градиентом, которые удовлетворяют условию Поляка – Лоясиевича. При этом для работы метода не требуются значения параметров $M$ и $\mu^{PL}$. Если же условие Поляка – Лоясиевича не выполняется, то можно утверждать, что скорость сходимости равна $O\left(\frac1{k^2}\right)$, но при этом методы не требуют никаких изменений.
Также рассматривается адаптивная каталист-оболочка неускоренного градиентного метода, которая позволяет доказать оценку скорости сходимости $O\left(\frac1{k^2}\right)$. Проведено экспериментальное сравнение неускоренного градиентного метода с адаптивным выбором шага, ускоренного с помощью адаптивной каталист-оболочки с методами AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) и алгоритмом Синхорна для задачи, двойственной к задаче оптимального транспорта.
Проведенные вычислительные эксперименты показали более быструю работу метода Alternating AGMsDR по сравнению как с неускоренным градиентным методом, ускоренным с помощью адаптивной каталист-оболочки, так и с методом AGMsDR, несмотря на асимптотически одинаковые гарантии скорости сходимости $O\left(\frac1{k^2}\right)$. Это может быть объяснено результатом о линейной скорости сходимости метода Alternating AGMsDR на классе задач, удовлетворяющих условию Поляка – Лоясиевича. Гипотеза была проверена на квадратичных задачах. Метод Alternating AGMsDR показал более быструю сходимость по сравнению с методом AGMsDR.
Ключевые слова: выпуклая оптимизация, альтернированная минимизация, ускоренные методы, адаптивные методы, условие Поляка –Лоясиевича.
On accelerated adaptive methods and their modifications for alternating minimization
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 497-515In the first part of the paper we present convergence analysis of AGMsDR method on a new class of functions — in general non-convex with $M$-Lipschitz-continuous gradients that satisfy Polyak – Lojasiewicz condition. Method does not need the value of $\mu^{PL}>0$ in the condition and converges linearly with a scale factor $\left(1 - \frac{\mu^{PL}}{M}\right)$. It was previously proved that method converges as $O\left(\frac1{k^2}\right)$ if a function is convex and has $M$-Lipschitz-continuous gradient and converges linearly with a~scale factor $\left(1 - \sqrt{\frac{\mu^{SC}}{M}}\right)$ if the value of strong convexity parameter $\mu^{SC}>0$ is known. The novelty is that one can save linear convergence if $\frac{\mu^{PL}}{\mu^{SC}}$ is not known, but without square root in the scale factor.
The second part presents modification of AGMsDR method for solving problems that allow alternating minimization (Alternating AGMsDR). The similar results are proved.
As the result, we present adaptive accelerated methods that converge as $O\left(\min\left\lbrace\frac{M}{k^2},\,\left(1-{\frac{\mu^{PL}}{M}}\right)^{(k-1)}\right\rbrace\right)$ on a class of convex functions with $M$-Lipschitz-continuous gradient that satisfy Polyak – Lojasiewicz condition. Algorithms do not need values of $M$ and $\mu^{PL}$. If Polyak – Lojasiewicz condition does not hold, the convergence is $O\left(\frac1{k^2}\right)$, but no tuning needed.
We also consider the adaptive catalyst envelope of non-accelerated gradient methods. The envelope allows acceleration up to $O\left(\frac1{k^2}\right)$. We present numerical comparison of non-accelerated adaptive gradient descent which is accelerated using adaptive catalyst envelope with AGMsDR, Alternating AGMsDR, APDAGD (Adaptive Primal-Dual Accelerated Gradient Descent) and Sinkhorn's algorithm on the problem dual to the optimal transport problem.
Conducted experiments show faster convergence of alternating AGMsDR in comparison with described catalyst approach and AGMsDR, despite the same asymptotic rate $O\left(\frac1{k^2}\right)$. Such behavior can be explained by linear convergence of AGMsDR method and was tested on quadratic functions. Alternating AGMsDR demonstrated better performance in comparison with AGMsDR.
-
Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.
Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.
Ключевые слова: динамика сообщества, бифуркация, динамические режимы, мультистабильность, модель Рикера, конкуренция, взаимодействие «хищник – жертва», скрытые циклы.
Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.
The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.
-
Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.
Ключевые слова: субградиентный метод, адаптивный метод, шаг Поляка, слабо выпуклые функции, острый минимум, неточный субградиент.
Subgradient methods for weakly convex problems with a sharp minimum in the case of inexact information about the function or subgradient
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1765-1778The problem of developing efficient numerical methods for non-convex (including non-smooth) problems is relevant due to their widespread use of such problems in applications. This paper is devoted to subgradient methods for minimizing Lipschitz $\mu$-weakly convex functions, which are not necessarily smooth. It is well known that subgradient methods have low convergence rates in high-dimensional spaces even for convex functions. However, if we consider a subclass of functions that satisfies sharp minimum condition and also use the Polyak step, we can guarantee a linear convergence rate of the subgradient method. In some cases, the values of the function or it’s subgradient may be available to the numerical method with some error. The accuracy of the solution provided by the numerical method depends on the magnitude of this error. In this paper, we investigate the behavior of the subgradient method with a Polyak step when inaccurate information about the objective function value or subgradient is used in iterations. We prove that with a specific choice of starting point, the subgradient method with some analogue of the Polyak step-size converges at a geometric progression rate on a class of $\mu$-weakly convex functions with a sharp minimum, provided that there is additive inaccuracy in the subgradient values. In the case when both the value of the function and the value of its subgradient at the current point are known with error, convergence to some neighborhood of the set of exact solutions is shown and the quality estimates of the output solution by the subgradient method with the corresponding analogue of the Polyak step are obtained. The article also proposes a subgradient method with a clipped step, and an assessment of the quality of the solution obtained by this method for the class of $\mu$-weakly convex functions with a sharp minimum is presented. Numerical experiments were conducted for the problem of low-rank matrix recovery. They showed that the efficiency of the studied algorithms may not depend on the accuracy of localization of the initial approximation within the required region, and the inaccuracy in the values of the function and subgradient may affect the number of iterations required to achieve an acceptable quality of the solution, but has almost no effect on the quality of the solution itself.
-
Исследование механических свойств C-кадгерина методом молекулярной динамики
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.
Investigation of C-Cadherin mechanical properties by Molecular Dynamics
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735Views (last year): 5.The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.
-
Описание процессов в ансамблях фотосинтетических реакционных центров с помощью кинетической модели типа Монте-Карло
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1207-1221Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.
В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.
Ключевые слова: кинетический метод Монте-Карло, фотосистема, электронный транспорт, кислород-выделяющий комплекс, пул пластохинонов, модель.
Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1207-1221Photosynthetic apparatus of a plant cell consists of multiple photosynthetic electron transport chains (ETC). Each ETC is capable of capturing and utilizing light quanta, that drive electron transport along the chain. Light assimilation efficiency depends on the plant’s current physiological state. The energy of the part of quanta that cannot be utilized, dissipates into heat, or is emitted as fluorescence. Under high light conditions fluorescence levels gradually rise to the maximum level. The curve describing that rise is called fluorescence rise (FR). It has a complex shape and that shape changes depending on the photosynthetic apparatus state. This gives one the opportunity to investigate that state only using the non invasive measuring of the FR.
When measuring fluorescence in experimental conditions, we get a response from millions of photosynthetic units at a time. In order to reproduce the probabilistic nature of the processes in a photosynthetic ETC, we created a Monte Carlo model of this chain. This model describes an ETC as a sequence of electron carriers in a thylakoid membrane, connected with each other. Those carriers have certain probabilities of capturing light photons, transferring excited states, or reducing each other, depending on the current ETC state. The events that take place in each of the model photosynthetic ETCs are registered, accumulated and used to create fluorescence rise and electron carrier redox states accumulation kinetics. This paper describes the model structure, the principles of its operation and the relations between certain model parameters and the resulting kinetic curves shape. Model curves include photosystem II reaction center fluorescence rise and photosystem I reaction center redox state change kinetics under different conditions.
-
Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.
Ключевые слова: моделирование баланса CO2, устойчивость модели, динамический камерный метод, осушенный торфяник, торфяные почвы, сенокос, залежь, дыхание почвы, дыхание экосистемы.
Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: land use scenario analysis
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1427-1449The data of episodic field measurements of carbon dioxide balance components (soil respiration — Rsoil, ecosystem respiration — Reco, net ecosystem exchange — NEE) of hayfields under use and abandoned one are interpreted by modelling. The field measurements were carried within five field campaigns in 2018 and 2019 on the drained part of the Dubna Peatland in Taldom District, Moscow Oblast, Russia. The territory is within humid continental climate zone. Peatland drainage was done out for milled peat extraction. After extraction was stopped, the residual peat deposit (1–1.5 m) was ploughed and grassed (Poa pratensis L.) for hay production. The current ground water level (GWL) varies from 0.3–0.5 m below the surface during wet and up to 1.0 m during dry periods. Daily dynamics of CO2 fluxes was measured using dynamic chamber method in 2018 (August) and 2019 (May, June, August) for abandoned ditch spacing only with sanitary mowing once in 5 years and the ditch spacing with annual mowing. NEE and Reco were measured on the sites with original vegetation, and Rsoil — after vegetation removal. To model a seasonal dynamics of NEE, the dependence of its components (Reco, Rsoil, and Gross ecosystematmosphere exchange of carbon dioxide — GEE) from soil and air temperature, GWL, photosynthetically active radiation, underground and aboveground plant biomass were used. The parametrization of the models has been carried out considering the stability of coefficients estimated by the bootstrap method. R2 (α = 0.05) between simulated and measured Reco was 0.44 (p < 0.0003) on abandoned and 0.59 (p < 0.04) on under use hayfield, and GEE was 0.57 (p < 0.0002) and 0.77 (p < 0.00001), respectively. Numerical experiments were carried out to assess the influence of different haymaking regime on NEE. It was found that NEE for the season (May 15 – September 30) did not differ much between the hayfield without mowing (4.5±1.0 tC·ha–1·season–1) and the abandoned one (6.2±1.4). Single mowing during the season leads to increase of NEE up to 6.5±0.9, and double mowing — up to 7.5±1.4 tC·ha–1·season–1. This means increase of carbon losses and CO2 emission into the atmosphere. Carbon loss on hayfield for both single and double mowing scenario was comparable with abandoned hayfield. The value of removed phytomass for single and double mowing was 0.8±0.1 tC·ha–1·season–1 and 1.4±0.1 (45% carbon content in dry phytomass) or 3.0 and 4.4 t·ha–1·season–1 of hay (17% moisture content). In comparison with the fallow, the removal of biomass of 0.8±0.1 at single and 1.4±0.1 tC·ha–1·season–1 double mowing is accompanied by an increase in carbon loss due to CO2 emissions, i.e., the growth of NEE by 0.3±0.1 and 1.3±0.6 tC·ha–1·season–1, respectively. This corresponds to the growth of NEE for each ton of withdrawn phytomass per hectare of 0.4±0.2 tС·ha–1·season–1 at single mowing, and 0.9±0.7 tС·ha–1·season–1 at double mowing. Therefore, single mowing is more justified in terms of carbon loss than double mowing. Extensive mowing does not increase CO2 emissions into the atmosphere and allows, in addition, to “replace” part of the carbon loss by agricultural production.
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети.
Changepoint detection on financial data using deep learning approach
Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.
To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.
The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.
As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.
-
Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.
Multi-stable scenarios for differential equations describing the dynamics of a predators and preys system
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1451-1466Dynamic scenarios leading to multistability in the form of continuous families of stable solutions are studied for a system of autonomous differential equations. The approach is based on determining the cosymmetries of the problem, calculating stationary solutions, and numerically-analytically studying their stability. The analysis is carried out for equations of the Lotka –Volterra type, describing the interaction of two predators feeding on two related prey species. For a system of ordinary differential equations of the 4th order with 11 real parameters, a numerical-analytical study of possible interaction scenarios was carried out. Relationships are found analytically between the control parameters under which the cosymmetry linear in the variables of the problem is realized and families of stationary solutions (equilibria) arise. The case of multicosymmetry is established and explicit formulas for a two-parameter family of equilibria are presented. The analysis of the stability of these solutions made it possible to reveal the division of the family into regions of stable and unstable equilibria. In a computational experiment, the limit cycles branching off from unstable stationary solutions are determined and their multipliers corresponding to multistability are calculated. Examples of the coexistence of families of stable stationary and non-stationary solutions are presented. The analysis is carried out for the growth functions of logistic and “hyperbolic” types. Depending on the parameters, scenarios can be obtained when only stationary solutions (coexistence of prey without predators and mixed combinations), as well as families of limit cycles, are realized in the phase space. The multistability scenarios considered in the work allow one to analyze the situations that arise in the presence of several related species in the range. These results are the basis for subsequent analysis when the parameters deviate from cosymmetric relationships.
-
Решение распределенных вариационных неравенств с использованием смещенной компрессии, похожести данных и локальных обновлений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1813-1827Вариационные неравенства представляют собой широкий класс задач, имеющих применение во множестве областей, включая теорию игр, экономику и машинное обучение. Однако, методы решения современных вариационных неравенств становятся все более вычислительно требовательными. Поэтому растет необходимость использовать распределенных подходов для решения таких задач за разумное время. В распределенной постановке вычислительным устройствам необходимо обмениваться данными друг с другом, что является узким местом. Существует три основных приема снижения стоимости и количества обменов данными: использование похожести локальных операторов, сжатие сообщений и применение локальных шагов на устройствах. Известен алгоритм, который использует эти три техники одновременно для решения распределенных вариационных неравенств и превосходит все остальные методы с точки зрения коммуникационных затрат. Однако этот метод работает только с так называемыми несмещенными операторами сжатия. Между тем использование смещенных операторов приводит к лучшим результатам на практике, но требует дополнительных модификаций алгоритма и больших усилий при доказательстве сходимости. В этой работе представляется новый алгоритм, который решает распределенные вариационные неравенства, используя похожесть локальных операторов, смещенное сжатие и локальные обновления на устройствах; выводится теоретическая сходимость такого алгоритма и проводятся эксперименты.
Communication-efficient solution of distributed variational inequalities using biased compression, data similarity and local updates
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1813-1827Variational inequalities constitute a broad class of problems with applications in a number of fields, including game theory, economics, and machine learning. Today’s practical applications of VIs are becoming increasingly computationally demanding. It is therefore necessary to employ distributed computations to solve such problems in a reasonable time. In this context, workers have to exchange data with each other, which creates a communication bottleneck. There are three main techniques to reduce the cost and the number of communications: the similarity of local operators, the compression of messages and the use of local steps on devices. There is an algorithm that uses all of these techniques to solve the VI problem and outperforms all previous methods in terms of communication complexity. However, this algorithm is limited to unbiased compression. Meanwhile, biased (contractive) compression leads to better results in practice, but it requires additional modifications within an algorithm and more effort to prove the convergence. In this work, we develop a new algorithm that solves distributed VI problems using data similarity, contractive compression and local steps on devices, derive the theoretical convergence of such an algorithm, and perform some experiments to show the applicability of the method.
-
О подходе к разработке и валидации алгоритмов маршрутизации на разрывных сетях
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 983-993В данной статье рассматривается проблема централизованного планирования маршрутов передачи данных в сетях, устойчивых к задержкам и разрывам. Исходная проблема расширяется дополнительными требованиями к хранению узлов и процессу связи. Во-первых, предполагается, что связь между узлами графа устанавливается с помощью антенн. Во-вторых, предполагается, что каждый узел имеет хранилище конечной емкости. Существующие работы не рассматривают и не решают задачу с этими ограничениями. Предполагается, что заранее известны информация о сообщениях, подлежащих обработке, информация о конфигурации сети в указанные моменты времени, взятые с определенными периодами, информация о временных задержках для ориентации антенн для передачи данных и ограничения на объем хранения данных на каждом спутнике группировки. Два хорошо известных алгоритма — CGR и Earliest Delivery with All Queues — модифицированы для удовлетворения расширенных требований. Полученные алгоритмы решают задачу поиска оптимального маршрута в сети, устойчивой к разрывам, отдельно для каждого сообщения. Также рассматривается проблема валидации алгоритмов в условиях отсутствия тестовых данных. Предложены и апробированы возможные подходы к валидации, основанные на качественных предположениях, описаны результаты экспериментов. Проведен сравнительный анализ производительности двух алгоритмов решения задачи маршрутизации. Два алгоритма, названные RDTNAS-CG и RDTNAS-AQ, были разработаны на основе алгоритмов CGR и Earliest Delivery with All Queues соответственно. Оригинальные алгоритмы были значительно расширены и была разработана дополненная реализация. Валидационные эксперименты были проведены для проверки минимальных требований «качества» к правильности алгоритмов. Сравнительный анализ производительности двух алгоритмов показал, что алгоритм RDTNAS-AQ на несколько порядков быстрее, чем RDTNAS-CG.
Augmented data routing algorithms for satellite delay-tolerant networks. Development and validation
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 983-993The problem of centralized planning for data transmission routes in delay tolerant networks is considered. The original problem is extended with additional requirements to nodes storage and communication process. First, it is assumed that the connection between the nodes of the graph is established using antennas. Second, it is assumed that each node has a storage of finite capacity. The existing works do not consider these requirements. It is assumed that we have in advance information about messages to be processed, information about the network configuration at specified time points taken with a certain time periods, information on time delays for the orientation of the antennas for data transmission and restrictions on the amount of data storage on each satellite of the grouping. Two wellknown algorithms — CGR and Earliest Delivery with All Queues are improved to satisfy the extended requirements. The obtained algorithms solve the optimal message routing problem separately for each message. The problem of validation of the algorithms under conditions of lack of test data is considered as well. Possible approaches to the validation based on qualitative conjectures are proposed and tested, and experiment results are described. A performance comparison of the two implementations of the problem solving algorithms is made. Two algorithms named RDTNAS-CG and RDTNAS-AQ have been developed based on the CGR and Earliest Delivery with All Queues algorithms, respectively. The original algorithms have been significantly expanded and an augmented implementation has been developed. Validation experiments were carried to check the minimum «quality» requirements for the correctness of the algorithms. Comparative analysis of the performance of the two algorithms showed that the RDTNAS-AQ algorithm is several orders of magnitude faster than RDTNAS-CG.
Indexed in Scopus
Full-text version of the journal is also available on the web site of the scientific electronic library eLIBRARY.RU
The journal is included in the Russian Science Citation Index
The journal is included in the RSCI
International Interdisciplinary Conference "Mathematics. Computing. Education"




